
.

TSIM2
A generic SPARC architecture simulator capable of
emulating ERC32- and LEON-based computer systems

2018 User's Manual

The most important thing we build is trust

TSIM2 Simulator User's Manual

TSIM2-UM 1 www.cobham.com/gaisler
November 2018, Version 2.0.62

TSIM2-UM
November 2018, Version 2.0.62

2 www.cobham.com/gaisler

Table of Contents
1. Introduction ... 7

1.1. General ... 7
1.2. Supported platforms and system requirements ... 7
1.3. Obtaining TSIM ... 7
1.4. License ... 7
1.5. Evaluation version .. 7
1.6. Problem reports .. 7

2. Installation ... 9
2.1. General ... 9
2.2. License installation ... 9

2.2.1. Floating keys .. 9
3. Operation ... 10

3.1. Overview .. 10
3.2. Starting TSIM .. 10
3.3. Standalone mode commands ... 14

3.3.1. Time specification for commands .. 17
3.4. Symbolic debug information ... 17
3.5. Breakpoints and watchpoints .. 18
3.6. Profiling .. 18
3.7. Code coverage ... 18
3.8. Check-pointing ... 19
3.9. Performance ... 20
3.10. Backtrace ... 20
3.11. Connecting to gdb ... 20
3.12. Thread support ... 21

3.12.1. TSIM thread commands ... 21
3.12.2. GDB thread commands ... 22

3.13. Synchronising TSIM time to external time ... 23
4. Emulation characteristics .. 24

4.1. Common behaviour ... 24
4.1.1. Timing ... 24
4.1.2. UARTs ... 24
4.1.3. Floating point unit (FPU) .. 24
4.1.4. Delayed write to special registers .. 25
4.1.5. Idle-loop optimisation ... 25
4.1.6. Custom instruction emulation ... 25
4.1.7. Chip-specific errata .. 26

4.2. ERC32 specific emulation .. 26
4.2.1. Processor emulation .. 26
4.2.2. MEC emulation ... 26
4.2.3. Interrupt controller ... 27
4.2.4. Watchdog ... 27
4.2.5. Power-down mode .. 27
4.2.6. Memory emulation ... 27
4.2.7. EDAC operation .. 27
4.2.8. Extended RAM and I/O areas ... 28
4.2.9. SYSAV signal ... 28
4.2.10. EXTINTACK signal ... 28
4.2.11. IWDE signal .. 28

4.3. LEON2 specific emulation ... 28
4.3.1. Processor .. 28
4.3.2. Cache memories .. 28
4.3.3. LEON peripherals registers .. 29
4.3.4. Interrupt controller ... 29
4.3.5. Power-down mode .. 29

TSIM2-UM
November 2018, Version 2.0.62

3 www.cobham.com/gaisler

4.3.6. Memory emulation ... 29
4.3.7. SPARC V8 MUL/DIV/MAC instructions ... 29
4.3.8. FPU emulation ... 29
4.3.9. DSU and hardware breakpoints ... 29

4.4. LEON3 specific emulation ... 29
4.4.1. General .. 29
4.4.2. Processor .. 29
4.4.3. Cache memories .. 30
4.4.4. Power-down mode .. 30
4.4.5. LEON3 peripherals registers .. 30
4.4.6. Interrupt controller ... 30
4.4.7. Memory emulation ... 30
4.4.8. CASA instruction ... 30
4.4.9. SPARC V8 MUL/DIV/MAC instructions ... 30
4.4.10. FPU emulation ... 30
4.4.11. DSU and hardware breakpoints ... 31
4.4.12. AHB status registers ... 31
4.4.13. GRTIMER emulation .. 31

4.5. LEON4 specific emulation ... 31
4.5.1. General .. 31
4.5.2. Processor .. 31
4.5.3. L1 Cache memories .. 31
4.5.4. L2 Cache memory .. 31
4.5.5. Power-down mode .. 31
4.5.6. LEON4 peripherals registers .. 31
4.5.7. Interrupt controller ... 31
4.5.8. Memory emulation ... 32
4.5.9. CASA instruction ... 32
4.5.10. SPARC V8 MUL/DIV/MAC instructions .. 32
4.5.11. FPU emulation ... 32
4.5.12. DSU and hardware breakpoints ... 32
4.5.13. AHB status registers ... 32

5. Loadable modules ... 33
5.1. TSIM I/O emulation interface ... 33

5.1.1. simif structure ... 33
5.1.2. ioif structure .. 35
5.1.3. Structure to be provided by I/O device ... 35
5.1.4. Cygwin specific io_init() ... 36

5.2. LEON AHB emulation interface .. 36
5.2.1. procif structure .. 37
5.2.2. Structure to be provided by AHB module ... 37
5.2.3. Big versus little endianess ... 40

5.3. TSIM/LEON co-processor emulation ... 40
5.3.1. FPU/CP interface ... 40
5.3.2. Structure elements .. 41
5.3.3. Attaching the FPU and CP ... 41
5.3.4. Big versus little endianess ... 42
5.3.5. Additional TSIM commands .. 42
5.3.6. Example FPU .. 42

5.4. Loadable modules distributed with TSIM .. 42
5.4.1. General AHB module limitations .. 42

6. TSIM library (TLIB) ... 44
6.1. Introduction ... 44
6.2. Function interface ... 44
6.3. External I/O and AHB modules .. 45
6.4. Builtin I/O module and/or AHB module ... 45
6.5. UART handling .. 46
6.6. Linking a TLIB application .. 46

TSIM2-UM
November 2018, Version 2.0.62

4 www.cobham.com/gaisler

6.7. Limitations .. 46
7. Cobham UT699 emulation .. 47

7.1. Overview of the UT699 AHB module .. 47
7.2. Loading the module .. 48

7.2.1. User input module interface ... 48
7.3. Debugging ... 50
7.4. 10/100 Mbps Ethernet Media Access Controller interface ... 50

7.4.1. Start up options ... 50
7.4.2. Commands .. 50
7.4.3. Debug flags ... 50
7.4.4. Ethernet packet server ... 51
7.4.5. Ethernet packet server protocol ... 51

7.5. SpaceWire interface with RMAP support .. 51
7.5.1. Start up options ... 52
7.5.2. Commands .. 52
7.5.3. Debug flags ... 52
7.5.4. SpaceWire packet server .. 52
7.5.5. SpaceWire packet server protocol ... 52

7.6. PCI initiator/target interface .. 54
7.6.1. Connecting a user PCI model with the UT699 module .. 54
7.6.2. Commands .. 54
7.6.3. Debug flags ... 54
7.6.4. PCI bus model API .. 54

7.7. GPIO interface ... 55
7.7.1. Connecting a user GPIO model with the UT699 module .. 55
7.7.2. Commands .. 55
7.7.3. Debug flags ... 55
7.7.4. GPIO model API ... 55

7.8. CAN interface .. 56
7.8.1. Start up options ... 56
7.8.2. Commands .. 56
7.8.3. Debug flags ... 56
7.8.4. Packet server ... 57
7.8.5. CAN packet server protocol ... 57

8. Cobham UT699E emulation .. 59
8.1. Overview of the UT699E AHB module .. 59
8.2. Loading the module .. 60

8.2.1. User input module interface ... 60
8.3. Debugging ... 62
8.4. 10/100 Mbps Ethernet Media Access Controller interface ... 62

8.4.1. Start up options ... 62
8.4.2. Commands .. 62
8.4.3. Debug flags ... 62
8.4.4. Ethernet packet server ... 63
8.4.5. Ethernet packet server protocol ... 63

8.5. SpaceWire interface with RMAP support .. 63
8.5.1. Start up options ... 64
8.5.2. Commands .. 64
8.5.3. Debug flags ... 64
8.5.4. SpaceWire packet server .. 65
8.5.5. SpaceWire packet server protocol ... 65
8.5.6. Simple Mode ... 72

8.6. PCI initiator/target interface .. 73
8.6.1. Connecting a user PCI model with the UT699E module .. 73
8.6.2. Commands .. 73
8.6.3. Debug flags ... 73
8.6.4. PCI bus model API .. 73

8.7. GPIO interface ... 74

TSIM2-UM
November 2018, Version 2.0.62

5 www.cobham.com/gaisler

8.7.1. Connecting a user GPIO model with the UT699E module .. 74
8.7.2. Commands .. 74
8.7.3. Debug flags ... 74
8.7.4. GPIO model API ... 75

8.8. CAN interface .. 75
8.8.1. Start up options ... 75
8.8.2. Commands .. 75
8.8.3. Debug flags ... 76
8.8.4. Packet server ... 76
8.8.5. CAN packet server protocol ... 76

9. Cobham UT700 emulation .. 79
9.1. Overview of the UT700 AHB module .. 79
9.2. Loading the module .. 80

9.2.1. User input module interface ... 80
9.3. Debugging ... 82
9.4. 10/100 Mbps Ethernet Media Access Controller interface ... 82

9.4.1. Start up options ... 82
9.4.2. Commands .. 82
9.4.3. Debug flags ... 82
9.4.4. Ethernet packet server ... 83
9.4.5. Ethernet packet server protocol ... 83

9.5. SpaceWire interface with RMAP support .. 83
9.5.1. Start up options ... 84
9.5.2. Commands .. 84
9.5.3. Debug flags ... 84
9.5.4. SpaceWire packet server .. 85
9.5.5. SpaceWire packet server protocol ... 85
9.5.6. Simple Mode ... 92

9.6. PCI initiator/target interface .. 93
9.6.1. Connecting a user PCI model with the UT700 module .. 93
9.6.2. Commands .. 93
9.6.3. Debug flags ... 93
9.6.4. PCI bus model API .. 93

9.7. GPIO interface ... 94
9.7.1. Connecting a user GPIO model with the UT700 module .. 94
9.7.2. Commands .. 94
9.7.3. Debug flags ... 94
9.7.4. GPIO model API ... 95

9.8. CAN interface .. 95
9.8.1. Start up options ... 95
9.8.2. Commands .. 95
9.8.3. Debug flags ... 96
9.8.4. Packet server ... 96
9.8.5. CAN packet server protocol ... 96

9.9. SPI interface .. 98
9.9.1. Connecting a user SPI model with the UT700 module ... 98
9.9.2. Commands .. 98
9.9.3. Debug flags ... 98
9.9.4. SPI bus model API ... 98

10. Cobham Gaisler GR712RC emulation ... 100
10.1. Overview of the GR712RC AHB module .. 100
10.2. Loading the module ... 101

10.2.1. User input module interface .. 101
10.3. Debugging ... 102
10.4. CAN interface .. 103

10.4.1. Start up options .. 103
10.4.2. Commands ... 103
10.4.3. Debug flags ... 103

TSIM2-UM
November 2018, Version 2.0.62

6 www.cobham.com/gaisler

10.4.4. Packet server .. 104
10.4.5. CAN packet server protocol .. 104

10.5. 10/100 Mbps Ethernet Media Access Controller interface ... 105
10.5.1. Start up options .. 105
10.5.2. Commands ... 106
10.5.3. Debug flags ... 106
10.5.4. Ethernet packet server .. 106
10.5.5. Ethernet packet server protocol ... 106

10.6. SpaceWire interface with RMAP support ... 107
10.6.1. Start up options .. 107
10.6.2. Commands ... 108
10.6.3. Debug flags ... 108
10.6.4. SpaceWire packet server .. 109
10.6.5. SpaceWire packet server protocol .. 109
10.6.6. Simple Mode ... 116

10.7. SPI interface ... 117
10.7.1. Connecting a user SPI model with the GR712RC module 117
10.7.2. Commands ... 117
10.7.3. Debug flags ... 117
10.7.4. SPI bus model API ... 117

10.8. GPIO interface .. 118
10.8.1. Connecting a user GPIO model with the GR712RC module 118
10.8.2. Commands ... 118
10.8.3. Debug flags ... 118
10.8.4. GPIO model API .. 118

10.9. Clock Gating Unit, CANMUX and GRGPREG .. 119
11. Atmel AT697 emulation ... 120

11.1. Overview of the AT697 AHB module ... 120
11.2. Loading the module ... 121
11.3. AT697 initiator mode ... 121
11.4. AT697 target mode .. 121
11.5. Definitions ... 121

11.5.1. PCI command table ... 122
11.6. Read/write function installed by PCI module .. 122
11.7. Read/write function installed by AT697 module .. 122
11.8. Registers .. 123
11.9. Debug flags .. 124
11.10. Commands ... 124

12. TPS VxWorks AHB Module ... 125
12.1. Overview ... 125
12.2. Loading the module ... 125
12.3. Configuration .. 125

13. Support .. 126

TSIM2-UM
November 2018, Version 2.0.62

7 www.cobham.com/gaisler

1. Introduction

1.1. General

TSIM is a generic SPARC1 architecture simulator capable of emulating ERC32- and LEON-based computer sys-
tems.

TSIM provides several unique features:

• Emulation of ERC32 and LEON2/3/4 processors (in single processor systems)
• Superior performance: up to 60 MIPS on high-end PC (Intel i7-2600K @3.4GHz)
• Accelerated processor standby mode, allowing faster-than-realtime simulation speeds
• Standalone operation or remote connection to GNU debugger (gdb)
• Also provided as library to be included in larger simulator frameworks
• 64-bit time for practically unlimited simulation periods
• Instruction trace buffer
• EDAC emulation (ERC32)
• MMU emulation (LEON2/3/4)
• SRAM emulation and functional emulation of SDRAM (with SRAM timing) (LEON2/3/4)
• Local scratch-pad RAM (LEON3/4)
• Loadable modules to include user-defined I/O devices
• Non-intrusive execution time profiling
• Code coverage monitoring
• Instruction trace buffer
• Stack backtrace with symbolic information
• Check-pointing capability to save and restore complete simulator state
• Unlimited number of breakpoints and watchpoints
• Pre-defined functional simulation modules for GR712RC, UT699, UT700 and AT697

1.2. Supported platforms and system requirements

TSIM supports the following platforms: Solaris 2.8, Linux, Linux-x64, Windows XP/7, and Windows XP/7 with
Cygwin Unix emulation.

1.3. Obtaining TSIM

The primary site for TSIM is the Cobham Gaisler website [http://www.gaisler.com] where the latest version of
TSIM can be ordered and evaluation versions downloaded.

1.4. License

TSIM2 ERC32, TSIM2 LEON2, TSIM2 LEON3 and TSIM2 LEON4 are licensed separately as separate products.
The license can be found in license.txt in the top directory after installation.

1.5. Evaluation version

An evaluation version of TSIM2 LEON3 is available from the Cobham Gaisler website [http://www.gaisler.com].
The evaluation version may only be used for evaluation and internal testing and only during a period of 21 days
without purchasing a license. See the license.txt file that is included in the archive for details.

The evaluation version is limited to 32-bit time. It does not support check-pointing, loadable modules, library
interface, code coverage, configuration of caches, configuration of memory or chip flags such as -gr712rc or
-ut700.

1.6. Problem reports

Please send problem reports or comments to support@gaisler.com.

1SPARC is a registered trademark of SPARC International

http://www.gaisler.com
http://www.gaisler.com
http://www.gaisler.com
http://www.gaisler.com

TSIM2-UM
November 2018, Version 2.0.62

8 www.cobham.com/gaisler

Customers with a valid support agreement may send questions to support@gaisler.com. Include a TSIM log when
sending questions, please. A log can be obtained by starting TSIM with the command line switch -logfile
filename. Try to include as much details as possible from commands such as reg, hist/inst (enable history with
hist len), bt and with relevant debug options turned on. See also Chapter 13.

TSIM2-UM
November 2018, Version 2.0.62

9 www.cobham.com/gaisler

2. Installation

2.1. General

TSIM is distributed as a tar-file (e.g. tsim-erc32-2.0.62.tar.gz) with the following contents:

Table 2.1. TSIM content

Directory Description

coverage Source level coverage helper scripts

doc TSIM documentation

samples Sample programs

iomod Example loadable modules

tsim/cygwin TSIM binary for cygwin

tsim/linux TSIM binary for linux

tsim/linux-x64 TSIM binary for linux-x64

tsim/solaris TSIM binary for solaris

tsim/win32 TSIM binary for native Windows

tlib/cygwin TSIM library for cygwin

tlib/linux TSIM library for linux

tlib/linux-x64 TSIM library for linux-x64

tlib/solaris TSIM library for solaris

tlib/win32 TSIM library for native Windows

The tar-file can be installed at any location with the following command:

gunzip -c tsim-erc32-2.0.62.tar.gz | tar xf -

2.2. License installation

TSIM is licensed using a HASP USB hardware key. Before use, a device driver for the key must be installed. See
the simulator download page at the Cobham Gaisler website [http://www.gaisler.com] for information on where
to find the HASP device drivers.

2.2.1. Floating keys

Floating keys can be indentified by having a red housing (instead of blue/purple).

Floating license keys requires that the runtime is installed in both client and server. In addition the server also
need to have a license manager installed. The license manager software for Windows can be downloaded from
the same website as the runtime.

For Linux, the license manager can be downloaded from here [http://www.gaisler.com/rus/LM.tar.gz]. The install
script is outdated and will fail on many modern distributions. The following workaround works for Ubuntu 16.04
and 18.04:

$ sudo RUNLEVELDIR=/etc/rc2.d bash ./dinst .

The license manager can also be started manually by running the hasplm executable.

http://www.gaisler.com
http://www.gaisler.com
http://www.gaisler.com/rus/LM.tar.gz
http://www.gaisler.com/rus/LM.tar.gz

TSIM2-UM
November 2018, Version 2.0.62

10 www.cobham.com/gaisler

3. Operation

3.1. Overview

TSIM can operate in two modes: standalone and attached to gdb. In standalone mode, ERC32 or LEON appli-
cations can be loaded and simulated using a command line interface. A number of commands are available to
examine data, insert breakpoints and advance simulation. When attached to gdb, TSIM acts as a remote gdb target,
and applications are loaded and debugged through gdb (or a gdb front-end such as ddd).

3.2. Starting TSIM

TSIM is started as follows on a command line:

tsim-erc32 [options] [input_files]
tsim-leon [options] [input_files]
tsim-leon3 [options] [input_files]
tsim-leon4 [options] [input_files]

The following command line options are supported by TSIM:

-ahbm ahb_module
Use ahb_module as loadable AHB module rather than the default ahb.so (LEON only). If multi-
ple -ahbm switches are specified, up to 16 AHB modules can be loaded. The environmental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-ahbstatus
Adds AHB status register support.

-asi1noallocate
Makes ASI 1 reads not allocate cache lines (LEON3/4 only).

-at697e
Configure caches according to the Atmel AT697E device (LEON2 only). See Chapter 11 for details on
AT697 emulation.

-banks ram_banks
Sets how many RAM banks the SRAM is divided on. Supported values are 1, 2 or 4. Default is 1. (LEON
only).

-bopt
Enables idle-loop optimisation (see Section 4.1.5).

-bp
Enables emulation of LEON3/4 branch prediction

-bz
Halt execution on all traps except privileged_instruction, fpu_disabled, window_overflow,
window_underflow, asynchronous_interrupt and trap_instruction (As GRMON does when not using the -
nb option). This halts at the pc and in the register window of the trapping instruction. Note that this does not
function as an ordinary break in execution; continuing from this halt will re-execute the trapping instruction.

-c file
Reads commands from file and executes them at startup.

-cfg file
Reads extra configuration options from file.

-cfgreg_and and_mask, -cfgreg_or or_mask
LEON2 only: Patch the Leon Configuration Register (0x80000024). The new value will be: (reg &
and_mask)| or_mask.

-covtrans
Enable MMU translations for the coverage system. Needed when MMU is enabled and not mapping 1-to-1.

-cpm cp_module
Use cp_module as loadable co-processor module file name (LEON). The environmental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-cas (-nocas)
When running a VXWORKS SMP image the SPARCV9 “casa” instruction is used. The option -cas
enables this instruction (LEON3/4 only). The -nocas option can disable CAS support when otherwise
already enabled.

TSIM2-UM
November 2018, Version 2.0.62

11 www.cobham.com/gaisler

-dcsize size
Defines the set-size (KiB) of the LEON data cache. Allowed values are powers of two in the range 1 - 64
for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-dlock
Enable data cache line locking. Default is disabled. (LEON only).

-dlram addr size
Allocates size KiB of local dcache scratchpad memory at address addr. (LEON3/4)

-dlsize size
Sets the line size of the LEON data cache (in bytes). Allowed values are 16 or 32. Default is 16.

-drepl repl
Sets the replacement algorithm for the LEON data cache. Allowed values are rnd (default for LEON2)
for random replacement, lru (default for LEON3/4) for the least-recently-used replacement algorithm and
lrr for the least-recently-replaced replacement algorithm.

-dsets sets
Defines the number of sets in the LEON data cache. Allowed values are 1 - 4.

-eclipse
Enable some special handling of the GDB protocol when connecting with Eclipse.

-exc2b
Issue 0x2b memory exception on memory write store error (LEON2 only)

-ext nr
Enable extended irq ctrl with extended irq number nr (LEON3/4 only)

-fast_uart
Run UARTs at infinite speed, rather than with correct baud rate.

-fpm fp_module
Use fp_module as loadable FPU module rather than a built in FPU model or looking for the default
fp.so/dll module (LEON only). The environmental variable TSIM_MODULE_PATH can be set to a ‘:’
separated (‘;’ in WIN32) list of search paths.

-freq system_clock
Sets the simulated system clock (MHz). Will affect UART timing and performance statistics. Default is
14 for ERC32 and 50 for LEON.

-gdb
Listen for GDB connection directly at start-up.

-gdbuartfwd
Forward output from first UART to GDB.

-gr702rc
Set cache parameters to emulate the GR702RC device.

-gr712rc
Set parameters to emulate the GR712RC device (albeit as a single processor device). Must be used when
using the GR712RC AHB module. This also sets up TSIM to simulate 6 APBUART cores and the GR-
TIMER core. See Chapter 10 for details on GR721RC emulation.

-grfpu
Emulate the GRFPU floating point unit, rather then Meiko or GRFPU-lite (LEON only).

-hwbp
Use TSIM hardware breakpoints for gdb breakpoints.

-stack addr
Set initial stack pointer.

-i
Forces bootloader-like initialization even when running from ROM. See the run and go commands for
details. See also the -ni option.

-icsize size
Defines the set-size (KiB) of the LEON instruction cache. Allowed values are powers of two in the range
1 - 64 for LEON2 and 1-256 for LEON3/4. Default is 4 KiB.

-ift
Generate illegal instruction trap on IFLUSH. Emulates the IFT input on the ERC32 processor.

-ilock
Enable instruction cache line locking. Default is disabled.

TSIM2-UM
November 2018, Version 2.0.62

12 www.cobham.com/gaisler

-ilram addr size
Allocates size bytes of local icache scratchpad memory at address addr. (LEON3/4)

-ilsize size
Sets the line size of the LEON instruction cache (in bytes). Allowed values are 16 or 32. Default is 16 for
LEON2/3 and 32 for LEON4.

-iom io_module
Use io_module as loadable I/O module rather than the default io.so. The environmental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

-irepl repl
Sets the replacement algorithm for the LEON instruction cache. Allowed values are rnd (default for
LEON2) for random replacement, lru (default for LEON3/4) for the least-recently-used replacement al-
gorithm and lrr for the least-recently-replaced replacement algorithm.

-isets sets
Defines the number of sets in the LEON instruction cache. Allowed values are 1(default) - 4.

-iwde
Set the IWDE input to 1. Default is 0. (TSC695E only)

-l2wsize size
Enable emulation of L2 cache (LEON4 only) with size KiB. The size must be binary aligned (e.g. 16,
32, 64 ...).

-logfile filename
Logs the console output to filename. If filename is preceded by ‘+’ output is append.

-mcfgX value
Set the reset value of memory configuration register X, where X can be 1, 2 or 3 (LEON only).

-mfailok
Do not fail on startup even if explicitly requested io/ahb modules fails to load.

-mflat
This switch should be used when the application software has been compiled with the gcc -mflat option,
and debugging with gdb is done.

-mmu / -nommu
Enables or disables MMU support (LEON only). By default LEON2 and LEON3 does not have MMU
support, and LEON4 has MMU support. Chip options, e.g. -gr712rc, enables MMU support when the
corresponding chip has it.

-nb
Do not break on error exceptions when debugging through GDB. This also enables the -hwbp option.

-nfp
Disables the FPU to emulate system without FP hardware. Any FP instruction will generate an FP disabled
trap.

-ni
Prevents bootloader-like initialization even when not running from ROM. See the run and go commands
for details. See also the -i option.

-nomac
Disable LEON MAC instruction. (LEON only).

-noeditline
Disable use of editline for history and tab completion.

-nosram
Disable SRAM on startup. SDRAM will appear at 0x40000000 (LEON only).

-nothreads
Disable threads support.

-nouart
Disable emulation of UARTs. All access to UART registers will be routed to the I/O module.

-nov8
Disable SPARC V8 MUL/DIV instructions (LEON only).

-nrtimers val
Adds support for more than 2 timers. Value val can be in the range of 2 - 7 (LEON3/4 only). Default: 2.
See also the -sametimerirq and -timerirqbase number switches.

TSIM2-UM
November 2018, Version 2.0.62

13 www.cobham.com/gaisler

-numbp num
Sets the upper limit on number of possible breakpoints.

-numwp num
Sets the upper limit on number of possible watchpoints.

-nwin win
Defines the number of register windows in the processor. The default is 8. Only applicable to LEON3/4.

-port portnum
Use portnum for gdb communication (port 1234 is default)

-pr
Enable profiling.

-ram ram_size
Sets the amount of simulated RAM (KiB). Default is 4096.

-rest file_name
Restore saved state from file_name.tss. See Section 3.8.

-rom rom_size
Sets the amount of simulated ROM (KiB). Default is 2048.

-rom8, -rom16
By default, the PROM area at reset time is considered to be 32-bit. Specifying -rom8 or -rom16 will
initialise the memory width field in the memory configuration register to 8- or 16-bits. The only visible
difference is in the instruction timing.

-rtems ver
Override autodetected RTEMS version for thread support. ver should be 46, 48, 48-edisoft or 410.

-sametimerirq
Force the irq number to be the same for all timers. Default: separate increasing irqs for each timer.
(LEON3/4 only). See also the -nrtimers val and -timerirqbase number switches.

-sdram sdram_size
Sets the amount of simulated SDRAM (MiB). Default is 32. (LEON only)

-sdbanks <1|2>
Sets the SDRAM banks. This parameter is used to calculate the used SDRAM in conjunction with the
mcfg2.sdramsize field. The actually used SDRAM at runtime is sdbanks*mcfg2.sdramsize. Default:1
(LEON only)

-sym file
Read symbols from file. Useful for self-extracting applications

-timer32
Use 32 bit timers instead of 24 bit. (LEON2 only)

-timerirqbase number
Set the irq number of the first timer to interrupt number number (LEON3/4 only). Default: 8. See also the
-nrtimers val and -sametimerirq switches.

-tsc691
Emulate the TSC691 device, rather than TSC695

-tsc695e
Obsolete. TSIM/ERC32 now always emulates the TSC695 device rather that the early ERC32 chip-set.

-uartX device
This option connects the chosen UART to a serial device. Here, X can be in the range 1 up to the number
of uarts. By default, UART1 is connected to stdin/stdout and all others are disconnected.

On Linux, e.g. connecting the first uart to /dev/ttyUSB0 can be done with “-uart1 /dev/ttyUSB0”. On Linux,
using the device /dev/ptmx will create a pseudo-terminal pair with the chosen uart at one end. TSIM prints
out the name of the other end of the pair to be opened by host software communicating with the chosen uart.

On Windows use //./com1, //./com2 etc. to access the serial ports. The serial port settings can be adjusted
by opening the relevant entry under “Ports (COM and LPT)” entry in the Device Manager and chosing the
“Port Settings” tab in the dialogue that pops up.

-uart_fs <1|2|4|8|16|32>
UART FIFO depth in characters (LEON3/4 only). This setting affects all APBUARTs in the system. Valid
configurations are 1 (default), 2, 4, 8, 16 and 32 characters. If the FIFO depth is configured to 1 the UART
FIFO is not present instead only the holding register is present and FIFO level interrupts are not present.

TSIM2-UM
November 2018, Version 2.0.62

14 www.cobham.com/gaisler

The FIFO interface is available for both fast and accurate mode, however the transmitter side in fast mode
never fills the FIFO since characters are always sent immediately.

-ut699
Set parameters to emulate the UT699 device. Must be used when using the UT699 AHB module. Note that
when -ut699 is given, snooping will be set as non-functional. This also sets up TSIM to simulate only
one APBUART core. See Chapter 7 for details on UT699 emulation.

-ut699e
Set parameters to emulate the UT699E device. Must be used when using the UT699E AHB module. This
also sets up TSIM to simulate only one APBUART core. See Chapter 8 for details on UT699E emulation.

-ut700
Set parameters to emulate the UT700 device. Must be used when using the UT700 AHB module. This also
sets up TSIM to simulate only one APBUART core. See Chapter 9 for details on UT700 emulation.

-wdfreq freq
Specify the frequency of the watchdog clock. (ERC32 only)

input_files
Executable files to be loaded into memory. The input file is loaded into the emulated memory according to
the entry point for each segment. Recognized formats are elf32, aout and srecords.

Command line options can also be specified in the file .tsimcfg in the home directory. This file will be read at
startup and the contents will be appended to the command line.

3.3. Standalone mode commands

If the file .tsimrc exists in the home directory, it will be used as a batch file and the commands in it will be executed
at startup.

Below is a description of commands that are recognized by the simulator when used in standalone mode:

batch file
Execute a batch file of TSIM commands.

bload file [startaddr]
Load the binary file file into memory starting at startaddr. The default startaddr is the start of
RAM memory.

+bp, break address
Adds an breakpoint at address.

bp, break
Prints all breakpoints and watchpoints.

-bp, del [num]
Deletes breakpoint/watchpoint num. If num is omitted, all breakpoints and watchpoints are deleted.

bt
Print backtrace.

cont [instructions | amount timeunit]
Continue execution at present position, optionally for a number of instructions or an amount of time. See
Section 3.3.1 for the syntax for specifying time.

coverage <enable | disable | save [file_name] | clear | print address [len]>
Code coverage control. Coverage can be enabled, disabled, cleared, saved to a file or printed to the console.

dump file address length
Dumps memory content to file file, in whole aligned words. The address argument can be a symbol.

dis [addr] [count]
Disassemble [count] instructions at address [addr]. Default values for count is 16 and addr is the
program counter address.

echo string
Print string to the simulator window.

edac [clear | cerr | merr address]
Insert EDAC errors, or clear EDAC checksums (ERC32 only)

ep [clear|address]
Show, clear or set entry point for execution. Setting the entry point overrides the default start of execution
address for run and go commands.

TSIM2-UM
November 2018, Version 2.0.62

15 www.cobham.com/gaisler

event
Print events in the event queue. Only user-inserted events are printed.

flush [all | icache | dcache | addr]
Flush the LEON caches. Specifying all will flush both the icache and dcache. Specifying icache or dcache
will flush the respective cache. Specifying addr will flush the corresponding line in both caches.

float [-v]
Prints the FPU registers. With the optional -v argument, the fields of the fsr registers are listed and denor-
malized numbers are marked.

gdb
Listen for gdb connection.

go [address/symbol | -t] [instructions | amount timeunit]
The go command will continue execution without restarting the simulation. If an address or symbol is given,
execution starts from there. Otherwise, if an entry point has been set with the ep command, execution starts
from that entry point. Otherwise execution starts from the entry point of the last loaded image.

If the simulation time is at 0 (e.g. due to TSIM having just been started or due to the reset command) and
the address execution is being started from is not the reset address (i.e. address 0), TSIM sets up memory
controllers, timers and the like normally done by a bootloader in order to be able to run memory images
without a bootloader. Starting TSIM with the -i option forces such an initialization even when starting
from the reset address (but still only when the time is 0) and starting TSIM with the -ni option prevents
TSIM from doing such initialization in any case.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.1 for the syntax for
specifying time.

help
Print a small help menu for the TSIM commands.

hist [length|-f file]
hist length enables (or disables) the instruction trace buffer. The length last executed instructions will
be placed in the trace buffer. Specifying a zero trace length will disable the trace buffer.

hist with no arguments will display the trace buffer. See the inst [length] command for displaying only
a part of the instruction trace buffer.

hist -f filename will write the history trace to file.
icache, dcache

Dumps the contents of tag and data cache memories (LEON only).
inc cycles | amount timeunit

Increment simulator time without executing instructions for a number of cycles or an amount of time. The
event queue is evaluated during the advancement of time. See Section 3.3.1 for the syntax for specifying
time.

inst [length]
Display the latest length (default 30) instructions in the instruction trace buffer. See the hist [length|-
f file] command for how to enable the instruction trace buffer.

leon
Display LEON peripherals registers.

load files
Load files into simulator memory.

l2cache
Display contents of L2 cache. (LEON4 only)

mcfgX [value]
Set or show the user defined reset value of memory configuration register X, where X can be 1, 2 or 3
(LEON only).

mec
Display ERC32 MEC registers.

mem [addr] [count]
Display memory at addr for count bytes. Same default values as for dis. Unimplemented registers are
displayed as zero.

TSIM2-UM
November 2018, Version 2.0.62

16 www.cobham.com/gaisler

vmem [vaddr] [count]
Same as mem but does a MMU translation on vaddr first (LEON only).

mmu
Display the MMU registers (LEON only).

quit
Exits the simulator.

perf [reset]
The perf command will display various execution statistics. A ‘perf reset’ command will reset the statistics.
This can be used if statistics shall be calculated only over a part of the program. The run and reset command
also resets the statistic information.

prof [0|1] [stime]
Enable (‘prof 1’) or disable (‘prof 0’) profiling.Without parameters, profiling information is printed. Default
sampling period is 1000 clock cycles, but can be changed by specifying stime.

reg [reg_name [value]|window]
Prints and sets the IU registers in the current register window, prints and sets individual registers and prints
other register windows. reg without parameters prints the IU registers of the current register window. reg
reg_name shows the value of the corresponding register. Valid register names are psr, tbr, wim, y, pc, npc,
fsr, g1-g7, o0-o7, l0-l7, i0-i7, f0-f31. reg reg_name value sets the corresponding register to value.
To view a certain register window, use reg wn, where n is the index of the register window.

reset
Performs a power-on reset without starting any execution.

restore file
Restore simulator state from file.

run [address/symbol | -t] [instructions | amount timeunit]
Resets the simulator and starts simulation from time 0. The event queue is emptied but any set breakpoints
remain. If an address or symbol is given, execution starts from there. Otherwise, if an entry point has been
set with the ep command, execution starts from that entry point. Otherwise execution starts from the reset
address (i.e. address 0) if a binary is loaded there or from the entry point from the last loaded image if the
memory at the reset address is zero.

If execution starts from the reset address, no bootloader-like initialization of the system is done. Otherwise
TSIM sets up memory controllers, timers and the like normally done by a bootloader in order to be able to
run memory images without a bootloader. Starting TSIM with the -i option forces such an initialization
even when starting from the reset address and starting TSIM with the -ni option prevents TSIM from
doing such initialization in any case.

If an address or symbol is specified, or -t is used instead of an address or symbol, an optional number
of instructions or amount of time to stop after can also be specified. See Section 3.3.1 for the syntax for
specifying time.

save file
Save simulator state to file.

shell cmd
Execute the command cmd in the host system shell.

stack [clear|address]
Show, clear or set initial stack pointer. Setting the stack pointer will override the default stack pointer.
Clearing a set stack pointer will make TSIM go back to setting a default stack pointer.

step
Execute and disassemble one instruction. See also trace [instructions | amount timeunit] .

sym [file]
Load symbol table from file. If file is omitted, prints current (.text) symbols.

trace [instructions | amount timeunit]
Executes and disassembles instruction(s). Equivalent to the cont but with each instruction disassembled as
it is executed. An optional number of instructions or amount of time to stop after can also be specified. See
Section 3.3.1 for the syntax for specifying time.

version
Prints the TSIM version and build date.

TSIM2-UM
November 2018, Version 2.0.62

17 www.cobham.com/gaisler

walk address [iswrite|isid|issu]*
If the MMU is enabled printout a table walk for the given address. The flags iswrite, isid and issu are
specifying the context: iswrite for a write access (default read), isid for a icache access (default dcache),
issu for a supervisor access (default user).

watch address
Adds a watchpoint at address.

wmem, wmemh, wmemb address value
Write a word, half-word or byte directly to simulated memory.

xwmem asi address value
Write a word to simulated memory using ASI=asi. Applicable to LEON3/4.

Typing a ‘Ctrl-C’ will interrupt a running simulator. Short forms of the commands are allowed, e.g c, co, or con,
are all interpreted as cont.

3.3.1. Time specification for commands

Commands such as run, cont, go, trace and int supports simulating for a specified amount of time.

If an amount without a unit is specified, execution will stop after the specified number of instructions (except for
the inc command that will stop after that many cycles). If an amount and a time unit (with whitespace between) is
specified, the execution will continue until the given time has passed (relative to the current time). The following
time units are supported:

Table 3.1. Time units for commands that run simulation

Argument Unit

c cycles

us microseconds

ms milliseconds

s seconds

min minutes

h hours

d days

3.4. Symbolic debug information

TSIM will automatically extract (.text) symbol information from elf-files. The symbols can be used where an
address is expected:

tsim> break main
breakpoint 3 at 0x020012f0: main
tsim> dis strcmp 5
02002c04 84120009 or %o0, %o1, %g2
02002c08 8088a003 andcc %g2, 0x3, %g0
02002c0c 3280001a bne,a 0x02002c74
02002c10 c64a0000 ldsb [%o0], %g3
02002c14 c6020000 ld [%o0], %g3

The sym command can be used to display all symbols, or to read in symbols from an alternate (elf) file:

tsim> sym /opt/rtems/src/examples/samples/dhry
read 234 symbols
tsim> sym
0x02000000 L _text_start
0x02000000 L _trap_table
0x02000000 L text_start
0x02000000 L start
0x0200102c L _window_overflow
0x02001084 L _window_underflow
0x020010dc L _fpdis

TSIM2-UM
November 2018, Version 2.0.62

18 www.cobham.com/gaisler

0x02001a4c T Proc_3

Reading symbols from alternate files is necessary when debugging self-extracting applications, such as bootproms
created with mkprom or linux/uClinux.

3.5. Breakpoints and watchpoints

TSIM supports execution breakpoints and write data watchpoints. In standalone mode, hardware breakpoints are
always used and no instrumentation of memory is made. When using the gdb interface, the gdb ‘break’ command
normally uses software breakpoints by overwriting the breakpoint address with a ‘ta 1’ instruction. Hardware
breakpoints can be inserted by using the gdb ‘hbreak’ command or by starting tsim with -hwbp, which will force
the use of hardware breakpoints also for the gdb ‘break’ command. Data write watchpoints are inserted using the
‘watch’ command. A watchpoint can only cover one word address, block watchpoints are not available.

3.6. Profiling

The profiling function calculates the amount of execution time spent in each subroutine of the simulated program.
This is made without intervention or instrumentation of the code by periodically sample the execution point and
the associated call tree. Cycles in the call graph are properly handled, as well as sections of the code where no
stack is available (e.g. trap handlers). The profiling information is printed as a list sorted on highest execution
time ratio. Profiling is enabled through the prof 1 command. The sampling period is by default 1000 clocks which
typically provides a good compromise between accuracy and performance. Other sampling periods can also be
set through the prof 1 n command. Profiling can be disabled through the prof 0 command. Below is an example
profiling the dhrystone benchmark:

bash$tsim-erc32 /opt/rtems/src/examples/samples/dhry
tsim> pro 1
profiling enabled, sample period 1000
tsim> go
resuming at 0x02000000
Execution starts, 200000 runs through Dhrystone
Stopped at time 23375862 (1.670e+00 s)
tsim> pro
function samples ratio(%)
start 36144 100.00
_start 36144 100.00
main 36134 99.97
Proc_1 10476 28.98
Func_2 9885 27.34
strcmp 8161 22.57
Proc_8 2641 7.30
.div 2097 5.80
Proc_6 1412 3.90
Proc_3 1321 3.65
Proc_2 1187 3.28
.umul 1092 3.02
Func_1 777 2.14
Proc_7 772 2.13
Proc_4 731 2.02
Proc_5 453 1.25
Func_3 227 0.62
printf 8 0.02
vfprintf 8 0.02
_vfprintf_r 8 0.02

tsim>

3.7. Code coverage

To aid software verification, the professional version of TSIM includes support for code coverage. When enabled,
code coverage keeps a record for each 32-bit word in the emulated memory and monitors whether the location has
been read, written or executed. The coverage function is controlled by the coverage command:

coverage enable enable coverage

coverage disable disable coverage

coverage save [filename] write coverage data to file (file name optional)

TSIM2-UM
November 2018, Version 2.0.62

19 www.cobham.com/gaisler

coverage print address [len] print coverage data to console, starting at address

coverage clear reset coverage data

The coverage data for each 32-bit word of memory consists of a 5-bit field, with bit0 (lsb) indicating that the word
has been executed, bit1 indicating that the word has been written, and bit2 that the word has been read. Bit3 and
bit4 indicates the presence of a branch instruction; if bit3 is set then the branch was taken while bit4 is set if the
branch was not taken.

As an example, a coverage data of 0x6 would indicate that the word has been read and written, while 0x1 would
indicate that the word has been executed. When the coverage data is printed to the console or save to a file, it is
presented for one block of 32 words (128 bytes) per line:

tsim> cov print start
02000000 : 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
02000080 : 0
02000100 : 0
02000180 : 0

When the code coverage is saved to file, only blocks with at least one coverage field set are written to the file.
Block that have all the coverage fields set to zero are not saved in order to decrease the file size.

NOTE: Only the internally emulated memory (PROM, SRAM and SDRAM) are subject for code coverage. Any
memory emulated in the user's I/O module must be handled by a user-defined coverage function.

The address ranges that are monitored are based on TSIM's startup parameters. For instance, the range correspond-
ing to the SDRAM for LEON will begin at address 0x40000000 if TSIM was started with -nosram or -ram 0,
or will begin at 0x60000000 otherwise. Reconfiguration of the memory controller during execution will not be
taken into account for monitored address ranges. Coverage information on memory reads will be recorded even
for cache hits.

NOTE on MMU and coverage: The TSIM coverage system does no address translations by default, for perfor-
mance reasons. To get physical address coverage when the MMU is is enabled and not mapping 1-to-1, use the
-covtrans option. The monitored address ranges are based on the physical addresses where TSIM emulates
ROM, SRAM or SDRAM. There is no support for getting virtual address coverage for virtual addresses that un-
translated would go outside these memory ranges.

When coverage is enabled, disassembly will include an extra column after the address, indicating the coverage
data. This makes it easier to analyse which instructions has not been executed:

tsim> di start
02000000 1 a0100000 clr %l0
02000004 1 29008004 sethi %hi(0x2001000), %l4
02000008 1 81c52000 jmp %l4
0200000c 1 01000000 nop
02000010 0 91d02000 ta 0x0
02000014 0 01000000 nop
02000018 0 01000000 nop

The coverage data is not saved or restored during check-pointing operations. When enabled, the coverage function
reduces the simulation performance of about 30%. When disabled, the coverage function does not impact simula-
tion performance. Individual coverage fields can be read and written using the TSIM function interface using the
tsim_coverage() call (see Section 6.2). Enabling and disabling the coverage functionality from the function
interface should be done using tsim_cmd().

Example scripts for annotating C code using saved coverage information from TSIM can be found in the coverage
sub-directory.

3.8. Check-pointing
The professional version of TSIM can save and restore its complete state, allowing to resume simulation from
a saved check-point. Saving the state is done with the save command:

tsim> save file_name

TSIM2-UM
November 2018, Version 2.0.62

20 www.cobham.com/gaisler

The state is saved to file_name.tss. To restore the state, use the restore command:
tsim> restore file_name

The state will be restored from file_name.tss. Restore directly at startup can be performed with the ‘-
rest file_name’ command line switch.

NOTE: TSIM command line options are not stored (such as alternate UART devices, etc.).

NOTE: AT697, UT699, UT700 and GR712RC simulation modules do not support check-pointing.

3.9. Performance

TSIM is highly optimised, and capable of simulating ERC32 systems faster than realtime. On high-end Athlon
processors, TSIM achieves more than 1 MIPS / 100 MHz (CPU frequency of host). Enabling various debugging
features such as watchpoints, profiling and code coverage can however reduce the simulation performance.

3.10. Backtrace

The bt command will display the current call backtrace and associated stack pointer:

tsim> bt
 %pc %sp
 #0 0x0200190c 0x023ffcc8 Proc_1 + 0xf0
 #1 0x02001520 0x023ffd38 main + 0x230
 #2 0x02001208 0x023ffe00 _start + 0x60
 #3 0x02001014 0x023ffe40 start + 0x1014

3.11. Connecting to gdb

TSIM can act as a remote target for gdb, allowing symbolic debugging of target applications. To initiate gdb
communication, start the simulator with the -gdb switch or use the TSIM gdb command:

bash-2.04$./tsim -gdb

TSIM/LEON - remote SPARC simulator, build 2001.01.10 (demo version)
serial port A on stdin/stdout
allocated 4096 K RAM memory
allocated 2048 K ROM memory
gdb interface: using port 1234

Then, start gdb in a different window and connect to TSIM using the extended-remote protocol:

bash-2.04$ sparc-rtems-gdb t4.exe
(gdb) target extended-remote localhost:1234
Remote debugging using localhost:1234
0x0 in ?? ()
(gdb)

To interrupt simulation, Ctrl-C can be typed in both gdb and TSIM windows. The program can be restarted using
the gdb run command but a load has first to be executed to reload the program image into the simulator:

(gdb) load
Loading section .text, size 0x14e50 lma 0x40000000
Loading section .data, size 0x640 lma 0x40014e50
Start address 0x40000000 , load size 87184
Transfer rate: 697472 bits/sec, 278 bytes/write.
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: /home/jgais/src/gnc/t4.exe

If gdb is detached using the detach command, the simulator returns to the command prompt, and the program can
be debugged using the standard TSIM commands. The simulator can also be re-attached to gdb by issuing the gdb
command to the simulator (and the target command to gdb). While attached, normal TSIM commands can be
executed using the gdb monitor command. Output from the TSIM commands is then displayed in the gdb console.

TSIM2-UM
November 2018, Version 2.0.62

21 www.cobham.com/gaisler

TSIM translates SPARC traps into (Unix) signals which are properly communicated to gdb. If the application
encounters a fatal trap, simulation will be stopped exactly on the failing instruction. The target memory and register
values can then be examined in gdb to determine the error cause. To disable this and let execution continue through
the corresponding trap handler instead, use the -nb startup option.

Profiling an application executed from gdb is possible if the symbol table is loaded in TSIM before execution
is started. gdb does not download the symbol information to TSIM, so the symbol table should be loaded using
the monitor command:

 (gdb) monitor sym t4.exe
 read 158 symbols

When an application that has been compiled using the gcc -mflat option is debugged through gdb, TSIM should
be started with -mflat in order to generate the correct stack frames to gdb.

3.12. Thread support

TSIM has thread support for the RTEMS operating system. Additional OS support will be added to future versions.
The GDB interface of TSIM is also thread aware and the related GDB commands are described later.

3.12.1. TSIM thread commands

thread info - lists all known threads. The currently running thread is marked with an asterisk. (The wide example
output below has been split into two parts.)

tsim> thread info

 Name | Type | Id | Prio | Time (h:m:s) | Entry point ...
-- ...
 Int. | internal | 0x09010001 | 255 | 5:30.682722 | bsp_idle_thread ...
-- ...
 UI1 | classic | 0x0a010001 | 100 | 0.041217 | system_init ...
-- ...
 ntwk | classic | 0x0a010002 | 100 | 0.251199 | soconnsleep ...
-- ...
 ETH0 | classic | 0x0a010003 | 100 | 0.000161 | soconnsleep ...
-- ...
* TA1 | classic | 0x0a010004 | 1 | 0.034739 | prep_timer ...
-- ...
 TA2 | classic | 0x0a010005 | 1 | 0.025740 | prep_timer ...
-- ...
 TA3 | classic | 0x0a010006 | 1 | 0.021357 | prep_timer ...
-- ...
 TTCP | classic | 0x0a010007 | 100 | 0.002914 | rtems_ttcp_main ...
-- ...

... | PC | State

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | SUSP

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

... | 0x40006a28 printf + 0x4 | READY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | DELAY

... ---

... | 0x40044bec _Thread_Dispatch + 0xd8 | Wevnt

... ---

thread bt id prints a backtrace of a thread.

tsim> thread bt 0x0a010007

TSIM2-UM
November 2018, Version 2.0.62

22 www.cobham.com/gaisler

 %%pc
#0 0x40044bec _Thread_Dispatch + 0xd8
#1 0x400418f8 rtems_event_receive + 0x74
#2 0x40031eb4 rtems_bsdnet_event_receive + 0x18
#3 0x40032050 soconnsleep + 0x50
#4 0x40033d48 accept + 0x60
#5 0x4000366c rtems_ttcp_main + 0xda0

A backtrace of the current thread (equivalent to normal bt command):

tsim> thread bt
 %pc %sp
#0 0x40006a28 0x4008d7d0 printf + 0x0
#1 0x40001c04 0x4008d838 Test_task + 0x178
#2 0x4005c88c 0x4008d8d0 _Thread_Handler + 0xfc
#3 0x4005c78c 0x4008d930 _Thread_Evaluate_mode + 0x58

3.12.2. GDB thread commands

TSIM needs the symbolic information of the image that is being debugged to be able to check for thread infor-
mation. Therefore the symbols needs to be read from the image using the sym command before issuing the gdb
command. When a program running in GDB stops TSIM reports which thread it is in. The command info threads
can be used in GDB to list all known threads.

Program received signal SIGINT, Interrupt.
[Switching to Thread 167837703]

0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’) at ../../../../../../../../../rtems-
4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38
38 while ((LEON3_Console_Uart[LEON3_Cpu_Index+port]->status & LEON_REG_UART_STATUS_THE)
== 0);

(gdb) info threads

 8 Thread 167837702 (FTPD Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 7 Thread 167837701 (FTPa Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 6 Thread 167837700 (DCtx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 5 Thread 167837699 (DCrx Wevnt) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 4 Thread 167837698 (ntwk ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 3 Thread 167837697 (UI1 ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
 2 Thread 151060481 (Int. ready) 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-
4.6.5/cpukit/score/src/threaddispatch.c:109
* 1 Thread 167837703 (HTPD ready) 0x40001b5c in console_outbyte_polled (port=0, ch=113 ’q’)
 at ../../../../../../../../../rtems-4.6.5/c/src/lib/libbsp/sparc/leon3/console/debugputs.c:38

Using the thread command a specified thread can be selected:

(gdb) thread 8

[Switching to thread 8 (Thread 167837702)]#0 0x4002f760 in _Thread_Dispatch () at ../../../../
../../rtems-4.6.5/cpukit/score/src/threaddispatch.c:109
109 _Context_Switch(&executing->Registers, &heir->Registers);

Then a backtrace of the selected thread can be printed using the bt command:

(gdb) bt

#0 0x4002f760 in _Thread_Dispatch () at ../../../../../../rtems-4.6.5/cpukit/score/src/thread-
dispatch.c:109
#1 0x40013ee0 in rtems_event_receive (event_in=33554432, option_set=0, ticks=0,
event_out=0x43fecc14)
 at ../../../../leon3/lib/include/rtems/score/thread.inl:205
#2 0x4002782c in rtems_bsdnet_event_receive (event_in=33554432, option_set=2, ticks=0,
event_out=0x43fecc14)
 at ../../../../../../rtems-4.6.5/cpukit/libnetworking/rtems/rtems_glue.c:641
#3 0x40027548 in soconnsleep (so=0x43f0cd70) at ../../../../../../rtems-4.6.5/cpukit/libnetwork-
ing/rtems/rtems_glue.c:465
#4 0x40029118 in accept (s=3, name=0x43feccf0, namelen=0x43feccec) at ../../../../../../rtems-

TSIM2-UM
November 2018, Version 2.0.62

23 www.cobham.com/gaisler

4.6.5/cpukit/libnetworking/rtems/rtems_syscall.c:215
#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
#6 0x40053388 in _Thread_Handler () at ../../../../../../rtems-4.6.5/cpukit/score/src/threadhan-
dler.c:123
#7 0x40053270 in __res_mkquery (op=0, dname=0x0, class=0, type=0, data=0x0, datalen=0,
newrr_in=0x0, buf=0x0, buflen=0)
 at ../../../../../../../rtems-4.6.5/cpukit/libnetworking/libc/res_mkquery.c:199

It is possible to use the frame command to select a stack frame of interest and examine the registers using the info
registers command. Note that the info registers command only can see the following registers for an inactive
task: g0-g7, l0-l7, i0-i7, o0-o7, pc and psr. The other registers will be displayed as 0:

(gdb) frame 5

#5 0x40004028 in daemon () at ../../../../../../rtems-4.6.5/c/src/libnetworking/rtems_servers/
ftpd.c:1925
1925 ss = accept(s, (struct sockaddr *)&addr, &addrLen);

(gdb) info reg

g0 0x0 0
g1 0x0 0
g2 0xffffffff -1
g3 0x0 0
g4 0x0 0
g5 0x0 0
g6 0x0 0
g7 0x0 0
o0 0x3 3
o1 0x43feccf0 1140772080
o2 0x43feccec 1140772076
o3 0x0 0
o4 0xf34000e4 -213909276
o5 0x4007cc00 1074252800
sp 0x43fecc88 0x43fecc88
o7 0x40004020 1073758240
10 0x4007ce88 1074253448
11 0x4007ce88 1074253448
12 0x400048fc 1073760508
13 0x43feccf0 1140772080
14 0x3 3
15 0x1 1
16 0x0 0
17 0x0 0
i0 0x0 0
i1 0x40003f94 1073758100
i2 0x0 0
i3 0x43ffafc8 1140830152
i4 0x0 0
i5 0x4007cd40 1074253120
fp 0x43fecd08 0x43fecd08
i7 0x40053380 1074082688
y 0x0 0
psr 0xf34000e0 -213909280
wim 0x0 0
tbr 0x0 0
pc 0x40004028 0x40004028 <daemon+148>
npc 0x4000402c 0x4000402c <daemon+152>
fsr 0x0 0
csr 0x0 0

It is not supported to set thread specific breakpoints. All breakpoints are global and stops the execution of all
threads. It is not possible to change the value of registers other than those of the current thread.

3.13. Synchronising TSIM time to external time

To maximise simulation performance, TSIM executes as fast as possible doing no synchronisation of the simula-
tion time with any external notion of time. This is especially apparent when the processor is in power-down mode
and simulation time is increased by the events in the event queue alone.

To synchronise the simulation time with an external notion of time, events that handles synchronisation needs to
be added to the event queue. The walltimesync example AHB module in the iomod directory provides an
example that makes sure that TSIM does not execute faster than real time. This example can be used as a template
for synchronising to other notions of time. See Chapter 5 on how to use modules.

TSIM2-UM
November 2018, Version 2.0.62

24 www.cobham.com/gaisler

4. Emulation characteristics

4.1. Common behaviour

4.1.1. Timing

The simulator time is maintained and incremented according the IU and FPU instruction timing. The parallel ex-
ecution between the IU and FPU is modelled, as well as stalls due to operand dependencies. Instruction timing has
been modelled after the real devices. Integer instructions have a higher accuracy than floating-point instructions
due to the somewhat unpredictable operand-dependent timing of the ERC32 and LEON MEIKO FPU. Typical
usage patterns have higher accuracy than atypical ones, e.g. having vs. not having caches enabled on LEON sys-
tems. Tracing using the inst or hist command will display the current simulator time in the left column. This time
indicates when the instruction is fetched. Cache misses, waitstates or data dependencies will delay the following
fetch according to the incurred delay.

4.1.2. UARTs

The UART model can be operating in two modes, correct timing and fast mode. In the correct timing mode the
baud rate and frame length is taken into account but in fast mode the UARTs operate at infinite speed. In fast mode
the transmitter FIFO/holding register is always is empty and a transmitter empty interrupt is generated directly
after each write to the transmitter data register. The receivers can never overflow or generate errors. Fast mode
is enabled with the -fast_uart switch.

Note that with correct UART timing, it is possible that the last character of a program is not displayed on the
console. This can happen if the program forces the processor in error mode, thereby terminating the simulation,
before the last character has been shifted out from the transmitter shift register. To avoid this, an application
should poll the UART status register and not force the processor in error mode before the transmitter shift registers
are empty. The real hardware does not exhibit this problem since the UARTs continue to operate even when the
processor is halted.

4.1.2.1. APBUART model (LEON3/4 only)

The APBUART model used on LEON3 and LEON4 systems has support for receiver and transmitter FIFO mode
also. In this mode the additional FIFO flags and level interrupts are also modelled like the APBUART IP. FIFO
mode is enabled by setting the FIFO depth to a larger value than 1 with the -fast_fs switch. FIFO mode is
supported with both accurate and fast mode. However in fast mode the transmitter operates in infinite speed always
causing the FIFO to be empty.

Loopback mode is supported both in fast and accurate mode. In fast mode transmitted characters directly ends
up in the receiver. Similar to the hardware the CTSN/RTSN signals are connected together in loop back mode
making flow control possible regardless of operating mode.

Flow control bit is supported but has a different effect compared to hardware when loopback mode is disabled.
TSIM UARTs interfaces to user controlled devices (see -uartX) which may/may not implement flow control
in different ways. When flow control is enabled APBUART receiver never overflows, however the transmitter
operates independently of the flow control setting as if CTSN is always 0 by pausing the simulator until the
character is transferred to the UART device.

4.1.2.2. UART model (ERC32/LEON2 only)

The UART model of ERC32/LEON2 automatically switch to fast mode when the scaler baud rate register is set
to zero. This is different from the APBUART model where only the -fast_uart switch is used to determine
the mode.

4.1.3. Floating point unit (FPU)

The simulator maps floating-point operations on the hosts floating point capabilities. This means that accuracy
and generation of IEEE exceptions is sometimes host dependent and will not always be identical to the actual
ERC32/LEON hardware. For GRFPU we have seen no discrepancies for any calculations or IEEE exceptions on

TSIM2-UM
November 2018, Version 2.0.62

25 www.cobham.com/gaisler

any host. On Windows and Linux hosts, the only known discrepancies for calculations or IEEE exceptions for
the Meiko on LEON2 and GRFPU-lite are that NaN:s can differ in significand bits. No discrepancies has been
seen in the signalling/quiet bit.

The models for the ERC32 FPU, GRFPU-lite and GRFPU models supports parallel IU and FPU execution, deferred
floating point traps and the floating point deferred trap queue. The GRFPU model does not however simulate the
possibility of multiple outstanding floating point operations. The model for the Meiko FPU on LEON2 models
the FPU setup for AT697E and AT7913E with no parallel IU and FPU execution, no floating point queue and
no deferred floating point traps.

The simulator implements (to some extent) data-dependent execution timing for the ERC32 FPU, the Meiko FPU
and GRFPU-lite. The complex timing of the GRFPU is not modelled in detail.

4.1.4. Delayed write to special registers

The SPARC architecture defines that a write to the special registers (%psr, %wim, %tbr, %fsr, %y) may have up to
3 delay cycles, meaning that up to 3 of the instructions following a special register write might not ‘see’ the newly
written value due to pipeline effects. While ERC32 and LEON have between 2 and 3 delay cycles, TSIM has 0.
This does not affect simulation accuracy or timing as long as the SPARC ABI recommendations are followed that
each special register write must always be followed by three NOP. If the three NOP are left out, the software might
fail on real hardware while still executing ‘correctly’ on the simulator.

4.1.5. Idle-loop optimisation

To minimise power consumption, LEON and ERC32 applications will typically place the processor in power-down
mode when the idle task is scheduled in the operation system. In power-down mode, TSIM increments the event
queue without executing any instructions, thereby significantly improving simulation performance. However,
some (poorly written) code might use a busy loop (BA 0) instead of triggering power-down mode. The -bopt
switch will enable a detection mechanism which will identify such behaviour and optimise the simulation as if
the power-down mode was entered.

4.1.6. Custom instruction emulation

TSIM/LEON allows the emulation of custom (non-SPARC) instructions. A handler for non-standard instruction
can be installed using the tsim_ext_ins() callback function (see Section 6.2). The function handler is called each
time an instruction is encountered that would cause an unimplemented instruction trap. The handler is passed the
opcode and all processor registers in a pointer, allowing it to decode and emulate a custom instruction, and update
the processor state.

The definition for the custom instruction handler is:

int myhandler (struct ins_interface *r);

The pointer *r is a structure containing the current instruction opcode and processor state:

struct ins_interface {
 uint32 psr; /* Processor status registers */
 uint32 tbr; /* Trap base register */
 uint32 wim; /* Window maks register */
 uint32 g[8]; /* Global registers */
 uint32 r[128]; /* Windowed register file */
 uint32 y; /* Y register */
 uint32 pc; /* Program counter *
 uint32 npc; /* Next program counter */
 uint32 inst; /* Current instruction */
 uint32 icnt; /* Clock cycles in curr inst */
 uint32 asr17;
 uint32 asr18;
};

SPARC uses an overlapping windowed register file, and accessing registers must be done using the current window
pointer (%psr[4:0]). To access registers %r8 - %r31 in the current window, use:

TSIM2-UM
November 2018, Version 2.0.62

26 www.cobham.com/gaisler

 cwp = r->psr & 7;
 regval = r->r[((cwp << 4) + RS1) % (nwindows * 16)];

Note that global registers (%r0 - %r7) should always be accessed by r->g[RS1].

The return value of the custom handler indicates which trap the emulated instruction has generated, or 0 if no
trap was caused. If the handler could not decode the instruction, 2 should be returned to cause an unimplemented
instruction trap.

The number of clocks consumed by the instruction should be returned in r->icnt; This value is by default 1, which
corresponds to a fully pipelined instruction without data interlock. The handler should not increment the %pc or
%npc registers, as this is done by TSIM.

4.1.7. Chip-specific errata

Incorrect behavior described in errata documents for specific devices are not emulated by TSIM in general.

4.2. ERC32 specific emulation

4.2.1. Processor emulation

TSIM/ERC32 emulates the behaviour of the TSC695 processor from Atmel by default. The parallel execution
between the IU and FPU is modelled, as well as stalls due to operand dependencies (IU & FPU). Starting TSIM
with the -tsc691 will enable TSC691 emulation (3-chip ERC32).

4.2.2. MEC emulation

The following table outlines the implemented MEC registers:

Table 4.1. Implemented MEC registers

Register Address Status

MEC control register 0x01f80000 implemented

Software reset register 0x01f80004 implemented

Power-down register 0x01f80008 implemented

Memory configuration register 0x01f80010 partly implemented

IO configuration register 0x01f80014 implemented

Waitstate configuration register 0x01f80018 implemented

Access protection base register 1 0x01f80020 implemented

Access protection end register 1 0x01f80024 implemented

Access protection base register 2 0x01f80028 implemented

Access protection end register 2 0x01f8002c implemented

Interrupt shape register 0x01f80044 implemented

Interrupt pending register 0x01f80048 implemented

Interrupt mask register 0x01f8004c implemented

Interrupt clear register 0x01f80050 implemented

Interrupt force register 0x01f80054 implemented

Watchdog acknowledge register 0x01f80060 implemented

Watchdog trap door register 0x01f80064 implemented

RTC counter register 0x01f80080 implemented

RTC counter program register 0x01f80080 implemented

RTC scaler register 0x01f80084 implemented

TSIM2-UM
November 2018, Version 2.0.62

27 www.cobham.com/gaisler

Register Address Status

RTC scaler program register 0x01f80084 implemented

GPT counter register 0x01f80088 implemented

GPT counter program register 0x01f80088 implemented

GPT scaler register 0x01f8008c implemented

GPT scaler program register 0x01f8008c implemented

Timer control register 0x01f80098 implemented

System fault status register 0x01f800A0 implemented

First failing address register 0x01f800A4 implemented

GPI configuration register 0x01f800A8 I/O module callback

GPI data register 0x01f800AC I/O module callback

Error and reset status register 0x01f800B0 implemented

Test control register 0x01f800D0 implemented

UART A RX/TX register 0x01f800E0 implemented

UART B RX/TX register 0x01f800E4 implemented

UART status register 0x01f800E8 implemented

The MEC registers can be displayed with the mec command, or using mem (‘mem 0x1f80000 256’). The registers
can also be written using wmem (e.g. ‘wmem 0x1f80000 0x1234’). When written, care has to be taken not to write
an unimplemented register bit with ‘1’, or a MEC parity error will occur.

4.2.3. Interrupt controller

Internal interrupts are generated as defined in the MEC specification. All 15 interrupts can be tested via the interrupt
force register. External interrupts can be generated through loadable modules.

4.2.4. Watchdog

The watchdog timer operate as defined in the MEC specification. The frequency of the watchdog clock can be
specified using the -wdfreq switch. The frequency is specified in MHz.

4.2.5. Power-down mode

The power-down register (0x01f80008) is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event
queue, thereby significantly increasing the simulation speed.

4.2.6. Memory emulation

The amount of simulated memory is configured through the -ram and -rom switches. The RAM size can be
between 256 KiB and 32 MiB, the ROM size between 128 KiB and 4 MiB. Access to unimplemented MEC
registers or non-existing memory will result in a memory exception trap.

The memory configuration register is used to decode the simulated memory. The fields RSIZ and PSIZ are used
to set RAM and ROM size, the remaining fields are not used.

NOTE: After reset, the MEC is set to decode 128 KiB of ROM and 256 KiB of RAM. The memory configuration
register has to be updated to reflect the available memory. The waitstate configuration register is used to generate
waitstates. This register must also be updated with the correct configuration after reset.

4.2.7. EDAC operation

The EDAC operation of ERC32 is implemented on the simulated RAM area (0x2000000 - 0x2FFFFFF). The
ERC32 Test Control Register can be used to enable the EDAC test mode and insert EDAC errors to test the

TSIM2-UM
November 2018, Version 2.0.62

28 www.cobham.com/gaisler

operation of the EDAC. The edac command can be used to monitor the number of errors in the memory, to insert
new errors, or clear all errors. To see the current memory status, use the edac command without parameters:

tsim> edac
RAM error count : 2
 0x20000000 : MERR
 0x20000040 : CERR

TSIM keeps track of the number of errors currently present, and reports the total error count, the address of each
error, and its type. The errors can either be correctable (CERR) or non-correctable (MERR). To insert an error
using the edac command, do ‘edac cerr addr’ or ‘edac merr addr’ :

tsim> edac cerr 0x2000000
correctable error at 0x02000000
tsim> edac
RAM error count : 1
 0x20000000 : CERR

To remove all injected errors, do edac clear. When accessing a location with an EDAC error, the behaviour of
TSIM is identical to the real hardware. A correctable error will trigger interrupt 1, while un-correctable errors will
cause a memory exception. The operation of the FSFR and FAR registers are fully implemented.

NOTE: The EDAC operation affect simulator performance when there are inserted errors in the memory. To
obtain maximum simulation performance, any diagnostic software should remove all inserted errors after having
performed an EDAC test.

4.2.8. Extended RAM and I/O areas

TSIM allows emulation of user defined I/O devices through loadable modules. EDAC emulation of extended
RAM areas is not supported.

4.2.9. SYSAV signal

TSIM emulates changes in the SYSAV output by calling the command() callback in the I/O module with either
“sysav 0” or “sysav 1” on each changes of SYSAV.

4.2.10. EXTINTACK signal

TSIM emulates assertion of the EXTINTACK output by calling the command() callback in the I/O module with
“extintack” on each assertion. Note that EXTINTACK is only asserted for one external interrupt as programmed
in the MEC interrupt shape register.

4.2.11. IWDE signal

The TSC695E processor input signal can be controlled by the -iwde switch at start-up. If the switch is given, the
IWDE signal will be high, and the internal watchdog enabled. If -iwde is not given, IWDE will be low and the
internal watchdog will be disabled. Note that the simulator must started in TSC695E-mode using the -tsc695e
switch, for this option to take effect.

4.3. LEON2 specific emulation

4.3.1. Processor

The LEON2 version of TSIM emulates the behavior of the LEON2 VHDL model. The (optional) MMU can be
emulated using the -mmu switch.

4.3.2. Cache memories

TSIM/LEON2 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and
-dlsize options. Allowed sizes are 1 - 64 KiB with 16 - 32 bytes/line. The characteristics of the LEON multi-set
caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options. Diag-
nostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to display
cache contents. Starting TSIM with -at697e will configure that caches according to the Atmel AT697E device.

TSIM2-UM
November 2018, Version 2.0.62

29 www.cobham.com/gaisler

4.3.3. LEON peripherals registers

The LEON peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.3.4. Interrupt controller

External interrupts are not implemented, so the I/O port interrupt register has no function. Internal interrupts are
generated as defined in the LEON specification. All 15 interrupts can also be generated from the user defined I/
O module using the set_irq() callback.

4.3.5. Power-down mode

The power-down register 0x80000018) is implemented as in the specification. A Ctrl-C in the simulator window
will exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event
queue, thereby significantly increasing the simulation speed.

4.3.6. Memory emulation

The memory configuration registers 1/2 are used to decode the simulated memory. The memory configuration
registers has to be programmed by software to reflect the available memory, and the number and size of the memory
banks. The waitstates fields must also be programmed with the correct configuration after reset. Both SRAM and
functionally modelled SDRAM (with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON2-FT is not implemented.

4.3.7. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction and/
or -nov8 to disable multiply and divide instructions.

4.3.8. FPU emulation

By default, TSIM/LEON emulates the Meiko FPU. The -grfpu command line option enables the GRFPU model.
See Section 4.1.3 for details on the FPU models.

4.3.9. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.4. LEON3 specific emulation

4.4.1. General

The LEON3 version of TSIM emulates the behavior of the LEON3MP template VHDL model distributed in
the GRLIB-1.0 IP library. The system includes the following modules: LEON3 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, GPTIMER timer unit with two 32-bit timers, two APBUART
uarts (unless a chip option changes this number). The AHB/APB plug&play information is provided at address
0xFFFFF000 - 0xFFFFFFFF (AHB) and 0x800FF000 - 0x800FFFFF (APB).

4.4.2. Processor

The instruction timing of the emulated LEON3 processor is modelled after LEON3 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The MMU can be
emulated using the -mmu switch. Local scratch pad RAM can be added with the -ilram and -dlram switches.

TSIM2-UM
November 2018, Version 2.0.62

30 www.cobham.com/gaisler

4.4.3. Cache memories

The evaluation version of TSIM/LEON3 implements 2*4 KiB caches, with 16 bytes per line. The commercial
TSIM version can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and
-dlsize options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the LEON mul-
ti-way caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

4.4.4. Power-down mode

The LEON3 power-down function is implemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event queue,
thereby significantly increasing the simulation speed.

4.4.5. LEON3 peripherals registers

The LEON3 peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.4.6. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP registers
are mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/O module
using the set_irq() callback. When having extended interrupts enabled, all 31 interrupts can be generated.
Extended interrupts can be enabled by the -ext option or a chip option for a chip that has extended interrupts
(e.g. -gr712rc, -ut700 and -ut699e).

4.4.7. Memory emulation

The LEON2 memory controller is emulated in the LEON3 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
software to reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON3-FT is not implemented.

Options regarding memory characteristics are not available in the evaluation version of TSIM/LEON3.

4.4.8. CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used in
VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.4.9. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON3 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction and/
or -nov8 to disable multiply and divide instructions.

4.4.10. FPU emulation

By default, TSIM/LEON3 emulates the GRFPU-lite FPU. The -grfpu command line option enables the GRFPU
model. See Section 4.1.3 for details on the FPU models.

TSIM2-UM
November 2018, Version 2.0.62

31 www.cobham.com/gaisler

4.4.11. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.4.12. AHB status registers

When using -ahbstatus or a chip option for a chip that has AHB status registers, AHB status registers are
enabled. As TSIM/LEON3 does not emulate FT, the CE bit will never be set. Furthermore, the HMASTER field
is set to 0 when the CPU caused the error and 1 when any other master caused the error.

4.4.13. GRTIMER emulation

When using -gr712rc, the GRTIMER core is modelled (in addition to the regular GPTIMER core).

4.5. LEON4 specific emulation

4.5.1. General

The LEON4 version of TSIM emulates the behavior of the LEON4MP template VHDL model distributed in the
GRLIB-1.0.x IP library. The system includes the following modules: LEON4 processor, APB bridge, IRQMP
interrupt controller, LEON2 memory controller, L2 cache, GPTIMER timer unit with two 32-bit timers, two AP-
BUART uarts. The AHB/APB plug&play information is provided at address 0xFFFFF000 - 0xFFFFFFFF (AHB)
and 0x800FF000 - 0x800FFFFF (APB).

4.5.2. Processor

The instruction timing of the emulated LEON4 processor is modelled after LEON4 VHDL model in GRLIB IP
library. The processor can be configured with 2 - 32 register windows using the -nwin switch. The MMU can be
emulated using the -mmu switch. Local scratch pad RAM can be added with the -ilram and -dlram switches.

4.5.3. L1 Cache memories

TSIM/LEON4 can emulate any permissible cache configuration using the -icsize, -ilsize, -dcsize and
-dlsize options. Allowed sizes are 1 - 256 KiB with 16 - 32 bytes/line. The characteristics of the LEON mul-
ti-set caches can be emulated using the -isets, -dsets, -irepl, -drelp, -ilock and -dlock options.
Diagnostic cache reads/writes are implemented. The simulator commands icache and dcache can be used to dis-
play cache contents.

4.5.4. L2 Cache memory

The LEON4 L2 cache is emulated, and placed between the memory controller and AHB bus. Both the PROM and
SRAM/SDRAM areas are cached in the L2. The size of the L2 cache is default 64 KiB, but can be configured to
any (binary aligned) size using the -l2wsize switch at start-up. Setting the size to 0 will disable the L2 cache.
The L2 cache is implemented with one way and 32 bytes/line. The contents of the L2 cache can be displayed with
the l2cache command.

4.5.5. Power-down mode

The LEON4 power-down function is implemented as in the specification. A Ctrl-C in the simulator window will
exit the power-down mode. In power-down mode, the simulator skips time until the next event in the event queue,
thereby significantly increasing the simulation speed.

4.5.6. LEON4 peripherals registers

The LEON4 peripherals registers can be displayed with the leon command, or using mem (‘mem 0x80000000
256’). The registers can also be written using wmem (e.g. ‘wmem 0x80000000 0x1234’).

4.5.7. Interrupt controller

The IRQMP interrupt controller is fully emulated as described in the GRLIB IP Manual. The IRQMP registers are
mapped at address 0x80000200. All 15 interrupts can also be generated from the user-defined I/O module using

TSIM2-UM
November 2018, Version 2.0.62

32 www.cobham.com/gaisler

the set_irq() callback. When having extended interrupts enabled, all 31 interrupts can be generated. Extended
interrupts can be enabled by the -ext option.

4.5.8. Memory emulation

The LEON2 memory controller is emulated in the LEON4 version of TSIM. The memory configuration registers
1/2 are used to decode the simulated memory. The memory configuration registers has to be programmed by
software to reflect the available memory, and the number and size of the memory banks. The waitstates fields must
also be programmed with the correct configuration after reset. Both SRAM and functionally modelled SDRAM
(with SRAM timing) can be emulated.

Using the -banks option, it is possible to set over how many RAM banks the external SRAM is divided in. For
mkprom encapsulated programs, it is essential that the same RAM size and bank number setting is used for both
mkprom and TSIM.

The memory EDAC of LEON4-FT is not implemented.

4.5.9. CASA instruction

The SPARCV9 “casa” command is implemented if the -cas switch is given. The “casa” instruction is used in
VXWORKS SMP multiprocessing to synchronize using a lock free protocol.

4.5.10. SPARC V8 MUL/DIV/MAC instructions

TSIM/LEON4 optionally supports the SPARC V8 multiply, divide and MAC instruction. To correctly emulate
LEON systems which do not implement these instructions, use the -nomac to disable the MAC instruction and/
or -nov8 to disable multiply and divide instructions.

4.5.11. FPU emulation

By default, TSIM/LEON4 emulates the GRFPU FPU. See Section 4.1.3 for details on the FPU models.

4.5.12. DSU and hardware breakpoints

The LEON debug support unit (DSU) and the hardware watchpoints (%asr24 - %asr31) are not emulated.

4.5.13. AHB status registers

When using -ahbstatus, AHB status registers are enabled. As TSIM/LEON4 does not emulate FT, the CE bit
will never be set. Furthermore, the HMASTER field is set to 0 when the CPU caused the error and 1 when any
other master caused the error.

TSIM2-UM
November 2018, Version 2.0.62

33 www.cobham.com/gaisler

5. Loadable modules

5.1. TSIM I/O emulation interface

User-defined I/O devices can be loaded into the simulator through the use of loadable modules. As the real proces-
sor, the simulator primarily interacts with the emulated device through read and write requests, while the emulated
device can optionally generate interrupts and DMA requests. This is implemented through the module interface
described below. The interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the I/O device; and one that is exported by the I/O device and allows TSIM
to access the I/O device. Address decoding of the I/O devices is straight-forward: All access that do not map on
any AHB module (LEON only) or the internally emulated memory and control registers are forwarded to the I/
O module.

TSIM exports two structures: simif and ioif. The simif structure defines functions and data structures belonging to
the simulator core, while ioif defines functions provided by system (ERC32/LEON) emulation. At startup, TSIM
searches for ‘io.so’ in the current directory, but the location of the module can be specified using the -iom switch.
Note that the module must be compiled to be position-independent, i.e. with the -fPIC switch (gcc). The win32
version of TSIM loads io.dll instead of io.so. See the iomod directory in the TSIM distribution for an example
io.c and how to build the .so and .dll modules. The environmental variable TSIM_MODULE_PATH can be set
to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.1.1. simif structure

The simif structure is defined in tsim.h:

struct sim_options {
 uint32 phys_ram;
 uint32 phys_rom;
 float64 freq;
 float64 wdfreq;
 uint32 phys_sdram;
};
struct sim_interface {
 struct sim_options *options; /* tsim command-line options */
 uint64 *simtime; /* current simulator time */
 void (*event)(void (*cfunc)(), uint32 arg, uint64 offset);
 void (*stop_event)(void (*cfunc)());
 int *irl; /* interrup request level */
 void (*sys_reset)(); /* reset processor */
 void (*sim_stop)(); /* stop simulation */
 char *args; /* concaterated argv */
 void (*stop_event_arg)(void (*cfunc)(),int arg,int op);

 /* Restorable events */
 unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));
 unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg),
 unsigned long arg);
 int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
 int (*revent_prearg)(unsigned short index, uint64 offset);
 void (*stop_revent)(unsigned short index);
 int (*lprintf)(const char *format, ...); /* logged formatted output */
 int (*vlprintf)(const char *format, va_list ap); /* logged formatted output */
};
struct sim_interface simif; /* exported simulator functions */

The elements in the structure has the following meaning:

struct sim_options *options;
Contains some tsim startup options. options.freq defines the clock frequency of the emulated processor and
can be used to correlate the simulator time to the real time.

uint64 *simtime;
Contains the current simulator time. Time is counted in clock cycles since start of simulation. To calculate
the elapsed real time, divide simtime with options.freq.

void (*event)(void (*cfunc)(), int arg, uint64 offset);
TSIM maintains an event queue to emulate time-dependent functions. The event() function inserts an
event in the event queue. An event consists of a function to be called when the event expires, an argument
with which the function is called, and an offset (relative the current time) defining when the event should
expire.

TSIM2-UM
November 2018, Version 2.0.62

34 www.cobham.com/gaisler

NOTE: The event() function may NOT be called from a signal handler installed by the I/O module, but
only from event callbacks or at start of simulation. The event queue can hold a maximum of 2048 events.

NOTE: For save and restore support, restorable events should be used instead.
void (*stop_event)(void (*cfunc)());

stop_event() will remove all events from the event queue which has the calling function equal to
cfunc().

NOTE: The stop_event() function may NOT be called from a signal handler installed by the I/O
module.

int *irl;
Current IU interrupt level. Should not be used by I/O functions unless they explicitly monitor theses lines.

void (*sys_reset)();
Performs a system reset. Should only be used if the I/O device is capable of driving the reset input.

void (*sim_stop)();
Stops current simulation. Can be used for debugging purposes if manual intervention is needed after a
certain event.

char *args;
Arguments supplied when starting tsim. The arguments are concatenated as a single string.

void (*stop_event_arg)(void (*cfunc)(),int arg,int op);
Similar to stop_event() but differentiates between 2 events with same cfunc but with different arg
given when inserted into the event queue via event(). Used when simulating multiple instances of an
entity. Parameter op should be 1 to enable the arg check.

unsigned short (*reg_revent)(void (*cfunc) (unsigned long arg));
Registers a restorable event that will use cfunc as callback. The returned index should be used when call-
ing revent(). The event argument is supplied when calling revent(). The call to reg_revent()
should be done once at I/O or AHB module initialization.

unsigned short (*reg_revent_prearg)(void (*cfunc) (unsigned long arg), un-
signed long arg);

Registers a restorable event that will use cfunc as callback and arg as argument. This can be used to
register an argument that is a pointer to a data structure. The returned index should be used when calling
revent_prearg(). The call to reg_revent_prearg() should be done once at I/O or AHB module
initialization.

int (*revent)(unsigned short index, unsigned long arg, uint64 offset);
This inserts an event registered by reg_revent() into the event queue with the registered cfunc for
the given index. Multiple events with the same index can be in the event queue at the same time. The
arg and offset arguments are the same as for the event() function.

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

int (*revent_prearg)(unsigned short index, uint64 offset);
This inserts an event registered by reg_revent_prearg() into the event queue with the registered
cfunc and arg for the given index. Multiple events with the same index can be in the event queue at
the same time. The offset argument is the same as for the event() function.

NOTE: See the description of event() for limitations on number of events and from which contexts
events can be added.

void (*stop_revent)(unsigned short index);
This removes all events from the event queue that has been entered by revent() or revent_prearg()
using the given index.

NOTE: The stop_revent() function may not be called from a signal handler installed by the I/O mod-
ule.

int (*lprintf)(const char *format, ...)
Function for logged formatted output. The function interface works like for printf.

int (*vlprintf)(const char *format, va_list ap)
Function for logged formatted output. The function interface works like for vprintf.

TSIM2-UM
November 2018, Version 2.0.62

35 www.cobham.com/gaisler

5.1.2. ioif structure

ioif is defined in tsim.h:

struct io_interface {
 void (*set_irq)(int irq, int level);
 int (*dma_read)(uint32 addr, uint32 *data, int num);
 int (*dma_write)(uint32 addr, uint32 *data, int num);
 int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
};
extern struct io_interface ioif; /* exported processor interface */

The elements of the structure have the following meaning:

void (*set_irq)(int irq, int level);
ERC32 use: drive the external MEC interrupt signal. Valid interrupts are 0 - 5 (corresponding to MEC
external interrupt 0 - 4, and EWDINT) and valid levels are 0 or 1. Note that the MEC interrupt shape register
controls how and when processor interrupts are actually generated. When -nouart has been used, MEC
interrupts 4, 5 and 7 can be generated by calling set_irq() with irq 6, 7 and 9 (level is not used in
this case.

LEON use: set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15 for systems without
extended interrupts and 1-31 for systems with extended interrupts. Care should be taken not to set interrupts
used by the LEON emulated peripherals. Note that the LEON interrupt control register controls how and
when processor interrupts are actually generated. Note that the level parameter is not used for LEON.

int (*dma_read)(uint32 addr, uint32 *data, int num);
int (*dma_write)(uint32 addr, uint32 *data, int num);

Performs DMA transactions to/from the emulated processor memory. Only 32-bit word transfers are al-
lowed, and the address must be word aligned. On bus error, 1 is returned, otherwise 0. For ERC32, the
DMA transfer uses the external DMA interface. For LEON, DMA takes place on the AMBA AHB bus.

int (*dma_write_sub)(uint32 addr, uint32 *data, int sz);
Performs DMA transactions to/from the emulated processor memory on the AMBA AHB bus. Available
for LEON only. On bus error, 1 is returned, otherwise 0. Write size is indicated by sz as follows: 0 = byte,
1 = half-word, 2 = word, 3 = double-word.

5.1.3. Structure to be provided by I/O device

struct io_subsystem {
 void (*io_init)(struct sim_interface sif, struct io_interface iif); /* start-up */
 void (*io_exit)(); /* called once on exit */
 void (*io_reset)(); /* called on processor reset */
 void (*io_restart)(); /* called on simulator restart */
 int (*io_read)(unsigned int addr, int *data, int *ws);
 int (*io_write)(unsigned int addr, int *data, int *ws, int size);
 char *(*get_io_ptr)(unsigned int addr, int size);
 void (*command)(char * cmd); /* I/O specific commands */
 void (*sigio)();/* Not used */
 void (*save)(char *fname);/* save simulation state */
 void (*restore)(char *fname); /* restore simulation state */
};
extern struct io_subsystem *iosystem; /* imported I/O emulation functions */

The elements of the structure have the following meanings:

void (*io_init)(struct sim_interface sif, struct io_interface iif);
Called once on simulator startup. Set to NULL if unused.

void (*io_exit)();
Called once on simulator exit. Set to NULL if unused.

void (*io_reset)();
Called every time the processor is reset (i.e also startup). Set to NULL if unused.

void (*io_restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

int (*io_read)(unsigned int addr, int *data, int *ws);
Processor read call. The processor always reads one full 32-bit word from addr. The data should be returned
in *data, the number of waitstates should be returned in *ws. If the access would fail (illegal address etc.),
1 should be returned, on success 0.

TSIM2-UM
November 2018, Version 2.0.62

36 www.cobham.com/gaisler

int (*io_write)(unsigned int addr, int *data, int *ws, int size);
Processor write call. The size of the written data is indicated in size: 0 = byte, 1 = half-word, 2 = word, 3 =
doubleword. The address is provided in addr, and is always aligned with respect to the size of the written
data. The number of waitstates should be returned in *ws. If the access would fail (illegal address etc.), 1
should be returned, on success 0.

char * (*get_io_ptr)(unsigned int addr, int size);
TSIM can access emulated memory in the I/O device in two ways: either through the io_read/io_write
functions or directly through a memory pointer. get_io_ptr() is called with the target address and
transfer size (in bytes), and should return a character pointer to the emulated memory array if the address
and size is within the range of the emulated memory. If outside the range, -1 should be returned. Set to
NULL if not used.

int (*command)(char * cmd);
The I/O module can optionally receive command-line commands. A command is first sent to the AHB and
I/O modules, and if not recognised, the to TSIM. command() is called with the full command string in
*cmd. Should return 1 if the command is recognized, otherwise 0. TSIM/ERC32 also calls this callback
when the SYSAV bit in the ERSR register changes. The commands “sysav 0” and “sysav 1” are then issued.
When TSIM commands are issued through the gdb ‘monitor’ command, a return value of 0 or 1 will result
in an ‘OK’ response to the gdb command. A return value > 1 will send the value itself as the gdb response.
A return value %lt; 1 will truncate the lsb 8 bits and send them back as a gdb error response: ‘Enn’.

void (*sigio)();
Not used as of tsim-1.2, kept for compatibility reasons.

void (*save)(char *fname);
The save() function is called when save command is issued in the simulator. The I/O module should
save any required state which is needed to completely restore the state at a later stage. *fname points to the
base file name which is used by TSIM. TSIM saves its internal state to fname.tss. It is suggested that the
I/O module save its state to fname.ios. Note that any events placed in the event queue by the I/O module
will be saved (and restored) by TSIM.

void (*restore)(char *fname);
The restore() function is called when restore command is issued in the simulator. The I/O module
should restore any required state to resume operation from a saved check-point. *fname points to the base
file name which is used by TSIM. TSIM restores its internal state from fname.tss.

5.1.4. Cygwin specific io_init()

Due to problems of resolving cross-referenced symbols in the module loading when using Cygwin, the
io_init() routine in the I/O module must initialise a local copy of simif and ioif. This is done by providing
the following io_init() routine:

static void io_init(struct sim_interface sif, struct io_interface iif)
{
#ifdef __CYGWIN32__
 /* Do not remove, needed when compiling on Cygwin! */
 simif = sif;
 ioif = iif;
#endif
 /* additional init code goes here */
};

The same method is also used in the AHB and FPU/CP modules.

5.2. LEON AHB emulation interface

In addition to the above described I/O modules, TSIM also allows loading AHB modules that can add simulation
models, override built-in simulation models, and even emulating the LEON2/3/4 processor core with a completely
user-defined memory and I/O architecture. This is not applicable to ERC32. The emulated processor core com-
municates with an AHB module using an interface similar to the AHB master interface in the real LEON VHDL
model. A single AHB module have the possibility to emulate the complete AHB bus and all attached units, or to
just emulate some cores on the AHB or APB bus. An AHB module that emulates memory can disable the internal
memory emulation.

TSIM2-UM
November 2018, Version 2.0.62

37 www.cobham.com/gaisler

TSIM supports up to 16 AHB modules, loaded using multiple -ahbm options on TSIM startup. The order they
are specified corresponds to the precedence order in which the modules handles bus accesses. For each bus access,
one module at a time, in the same order as the -ahbm options, gets the chance to handle an access or to let it get
passed to the next module. If an access is unhandled by all AHB modules, core TSIM will handle the access, or
if applicable pass it on to an I/O module.

The AHB module interface is made up of two parts; one that is exported by TSIM and defines TSIM functions
and data structures that can be used by the AHB module; and one that is exported by the AHB module and allows
TSIM to access the emulated AHB devices.

At start-up, TSIM searches for ‘ahb.so’ in the current directory, but the location of the module can be speci-
fied using the -ahbm switch. Note that the module must be compiled to be position-independent, i.e. with the
-fPIC switch (gcc). The win32 version of TSIM loads ahb.dll instead of ahb.so. See the iomod directory in
the TSIM distribution for an example ahb.c and how to build the .so /.dll modules. The environmental variable
TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths.

5.2.1. procif structure

TSIM exports one structure for AHB emulation: procif. The procif structure defines a few functions giving access
to the processor emulation and cache behaviour. The procif structure is defined in tsim.h:

struct proc_interface {
 void (*set_irl)(int level); /* generate external interrupt */
 void (*cache_snoop)(uint32 addr);
 void (*cctrl)(uint32 *data, uint32 read);
 void (*power_down)();
 void (*set_irq_level)(int level, int set);
 void (*set_irq)(uint32 irq, uint32 level); /* generate external interrupt */
};
extern struct proc_interface procif;

The elements in the structure have the following meaning:

void (*set_irl)(int level);
Set the current interrupt level (iui.irl in VHDL model). Allowed values are 0 - 15, with 0 meaning no pending
interrupt. Once the interrupt level is set, it will remain until it is changed by a new call to set_irl().
The modules interrupt callback routine should typically reset the interrupt level to avoid new interrupts.

void (*cache_snoop)(uint32 addr);
The cache_snoop() function can be used to invalidate data cache lines (regardless of whether data cache
snooping is enabled or not). The tags to the given address will be checked, and if a match is detected the
corresponding cache lines will be flushed (i.e. the tag will be cleared). If an MMU is present and is enabled
the argument should be a virtual address. See also the snoop function in struct ahb_interface.

void (*cctrl)(uint32 *data, uint32 read);
Read and write the cache control register (CCR). The CCR is attached to the APB bus in the LEON2 VHDL
model, and this function can be called by the AHB module to read and write the register. If read = 1, the
CCR value is returned in *data, else the value of *data is written to the CCR. The cctrl() function
is only needed for LEON2 emulation, since LEON3/4 accesses the cache controller through a separate ASI
load/store instruction.

void (*power_down)();
The LEON processor enters power down-mode when called.

void (*set_irq_level)(int level, int set);
Callback set_irq_level can be used to emulate level triggered interrupts. Parameter set should be 1
to activate the interrupt level specified in parameter level or 0 to reset it. The interrupt level will remain
active after it is set until it is reset again. Multiple calls can be made with different level parameters in
which case the highest level is used.

void (*set_irq)(uint32 irq, uint32 level);
Set the interrupt pending bit for interrupt irq. Valid values on irq is 1 - 15. Care should be taken not to set
interrupts used by the LEON emulated peripherals. Note that the LEON interrupt control register controls
how and when processor interrupts are actually generated.

5.2.2. Structure to be provided by AHB module

tsim.h defines the structure to be provided by the emulated AHB module:

TSIM2-UM
November 2018, Version 2.0.62

38 www.cobham.com/gaisler

struct ahb_access {
 uint32 address;
 uint32 *data;
 uint32 ws;
 uint32 rnum;
 uint32 wsize;
 uint32 cache; /* No longer used */
};

struct pp_amba {
 int is_apb;
 unsigned int vendor, device, version, irq;
 struct {
 unsigned int addr, p, c, mask, type;
 } bars[4];
};

struct ahb_subsystem {
 void (*init)(struct proc_interface procif);/* called once on start-up */
 void (*exit)(); /* called once on exit */
 void (*reset)(); /* called on processor reset */
 void (*restart)(); /* called on simulator restart */
 int (*read)(struct ahb_access *access);
 int (*write)(struct ahb_access *access);
 char *(*get_io_ptr)(unsigned int addr, int size);
 int (*command)(char * cmd); /* I/O specific commands */
 int (*sigio)(); /* Not used */
 void (*save)(char * fname); /* save state */
 void (*restore)(char * fname); /* restore state */
 int (*intack)(int level); /* interrupt acknowledge */
 int (*plugandplay)(struct pp_amba **); /* LEON3/4: get plug & play information */
 void (*intpend)(unsigned int pend); /* LEON3/4 only: interrupt pending change */
 int meminit; /* tell tsim weather to initialize mem */
 struct sim_interface *simif; /* initialized by tsim */
 unsigned char *(*get_mem_ptr_ws)(); /* initialized if meminit was set */
 void (*snoop) (unsigned int addr); /* initialized with cache snoop routine */
 struct io_interface *io; /* initialized by tsim */
 void (*dprint)(char *p); /* initialized by tsim, prints out a debug string */
 struct proc_interface *proc; /* initialized by tsim, access to proc_interface */
 int (*cacheable)(uint32 addr, uint32 size); /* Cacheability of area */
 int (*lprintf)(const char *format, ...); /* initialized by tsim */
 int (*vlprintf)(const char *format, va_list ap); /* initialized by tsim */
 void (*start)(void); /* Called each time simulation starts (again) (run, go, cont) */
 void (*stop)(void); /* Called each time simulation stops, (Ctrl-C, breakpoints, etc.) */
 void (*correctable_error)(uint32 addr, uint32 master, uint32 size, int write);
};

extern struct ahb_subsystem *ahbsystem; /* imported AHB emulation functions */

The elements of the structure have the following meanings:

void (*init)(struct proc_interface procif);
Called once on simulator startup. Set to NULL if unused.

void (*exit)();
Called once on simulator exit. Set to NULL if unused.

void (*reset)();
Called every time the processor is reset (i.e. also startup). Set to NULL if unused.

void (*restart)();
Called every time the simulator is restarted (simtime set to zero). Set to NULL if unused.

void int (*read)(struct ahb_access *ahbacc);
Processor AHB read. The processor always reads one or more 32-bit words from the AHB bus. The fol-
lowing fields of ahbacc is used. The ahbacc.addr field contains the read address of the first word to read.
The ahbacc.data field points to a buffer that the module can fill in. The module can also change the pointer
to point to a different buffer. The ahbacc.ws field should be set by the module to the number of cycles for
the complete access. The ahbacc.rnum field contains the number of words to be read. The function should
return 0 for a successful access, 1 for failed access and -1 for an area not handled by the module. The
ahbacc.wsize field is not used during read cycles. The ahbacc.cache field is no longer in use (use struct
ahb_subsystem.cacheable instead).

int (*write)(struct ahb_access *ahbacc);
Processor AHB write. The processor can write 1, 2, 4 or 8 bytes per access. The following fields of ahbacc
is used. The ahbacc.addr field contains the address of the write. The ahbacc.data field points to the data
to write; either one word for byte, half word or word writes or two words for double-word writes. The

TSIM2-UM
November 2018, Version 2.0.62

39 www.cobham.com/gaisler

ahbacc.wsize field defines write size as follows: 0 = byte, 1 = half-word, 2 = word, 3 = double-word. The
function should return 0 for a successful access, 1 for failed access and -1 for an area not handled by the
module. The ahbacc.rnum field is not used during write cycles. The ahbacc.cache field is no longer in use
(use struct ahb_subsystem.cacheable instead).

char * (*get_io_ptr)(unsigned int addr, int size);
During file load operations and displaying of memory contents, TSIM will access emulated memory
through a memory pointer. get_io_ptr() is called with the target address and transfer size (in bytes),
and should return a character pointer to the emulated memory array if the address and size is within the
range of the emulated memory. If outside the range, -1 should be returned. Set to NULL if not used.

int (*command)(char * cmd);
The AHB module can optionally receive command-line commands. A command is first sent to the AHB
and I/O modules, and if not recognised, then to TSIM. command() is called with the full command string
in *cmd. Should return 1 if the command is recognized, otherwise 0. When TSIM commands are issued
through the gdb ‘monitor’ command, a return value of 0 or 1 will result in an ‘OK’ response to the gdb
command. A return value > 1 will send the value itself as the gdb response. A return value < 1 will truncate
the lsb 8 bits and send them back as a gdb error response: ‘Enn’.

void (*save)(char *fname);
The save() function is called when save command is issued in the simulator. The AHB module should
save any required state which is needed to completely restore the state at a later stage. *fname points to
the base file name which is used by TSIM. TSIM save its internal state to fname.tss. It is suggested that
the AHB module save its state to fname.ahs. Note that any events placed in the event queue by the AHB
module will be saved (and restored) by TSIM.

void (*restore)(char * fname);
The restore() function is called when restore command is issued in the simulator. The AHB module
should restore any required state to resume operation from a saved check-point. *fname points to the base
file name which is used by TSIM. TSIM restores its internal state from fname.tss.

int (*intack)(int level);
intack() is called when the processor takes an interrupt trap (tt = 0x11 - 0x1f). The level of the taken
interrupt is passed in level. This callback can be used to implement interrupt controllers. intack() should
return 1 if the interrupt acknowledgement was handled by the AHB module, otherwise 0. If 0 is returned,
the default LEON interrupt controller will receive the intack instead.

int (*plugandplay)(struct pp_amba **p);
Leon3/4 only: The plugandplay() function is called at startup. optioplugandplay() should
return in p a static pointer to an array with elements of type struct pp_amba and return the number
of entries in the array. The callback plugandplay() is used to add entries in the AHB and APB con-
figuration space. Each struct pp_amba entry specifies an entry: If is_apb is set to 1 the entry will
appear in the APB configuration space and only member bars[0] will be used. If is_apb is 0 then the entry
will appear in the AHB slave configuration space and bars[0-3] will be used. If is_apb is 2 then the entry
will appear in the AHB master configuration space and bars[0-3] will be used. The members of the struct
resemble the fields in a configuration space entries. The entry is mapped to the first free slot. When using
the -gr712rc or -ut700 option, if is_apb is 3 the entry will appear under a second ABPCTRL core.

void (*intpend)(unsigned int pend);
Leon3/4 only: The intpend() function is called when the set of pending interrupts changes. The pend
argument is a bitmask with the bits of pending interrupts set to 1.

int meminit;
If all loaded AHB modules sets meminit to 1, TSIM will initialize and emulate initialize and emulate SRAM/
SDRAM/PROM memory. Thus, the AHB module should initialize meminit with 1 if TSIM (or another
AHB module) should handle memory simulation. Calls to read and write should return -1 (undecoded area)
for the memory regions in which case TSIM (or possibly some other AHB module) will handle them. If
meminit is set to 0 the AHB module itself should emulate the memory address regions.

struct sim_interface *simif;
Entry simif is initialized by tsim with the global struct sim_interface structure.

unsigned char *(*get_mem_ptr_ws) (unsigned int addr, int size, int *wws,
int *rws)

If meminit was set to 1 tsim will initialize get_mem_ptr_ws with a callback that can be used to query
a pointer to the host memory emulating the LEON’s memory, along with waitstate information. Note that
the host memory pointer returned is in the hosts byte order (normally little endian on a PC). The size

TSIM2-UM
November 2018, Version 2.0.62

40 www.cobham.com/gaisler

parameter should be the length of the access (1 for byte, 2 for short, 4 for word and 8 for double word access).
The wws and rws parameters will return the calculated write and read waitstates for a possible access. See
also snoop below for responsibilities when DMA writes are done via pointers from this function.

void (*snoop) (unsigned int addr)
The callback snoop is initialized by tsim. If data cache snooping is enabled (and functioning, i.e. not
ut699) it flushes (i.e. invalidates) data cache lines corresponding to physical address addr (on LEON3/4
even when MMU is enabled). If the AHB module is doing DMA writes directly to memory pointers, it is
the responsibility of the AHB module to call this for all changed words for snooping to work correctly.

struct io_interface *io;
Initialized with the I/O interface structure pointer.

void (*dprint)(char *);
Initialized by tsim with a callback pointer to the debug output function. Output ends up in log, when logging
is enabled and gets forwarded to gdb when running TSIM via gdb. See lprintf and vlprintf for the
formatted counterparts.

struct proc_interface *proc;
Initialized with the procif structure pointer.

int (*cacheable)(uint32 addr, uint32 size)
The cacheable callback is initialized by the module to NULL or a function returning cacheability
for a memory area. The function should return 1 if the range [addr,addr+size) is cacheable, 0 if it is un-
cacheable or -1 if the memory area it is not handled by the module. If all modules return -1 and/or lack the
cacheable callback, the area will be considered cacheable for memory areas [0x00000000,0x20000000)
and [0x40000000-0x80000000) and non-cacheable for all other areas. NOTE: For any (correspondingly
aligned) area as large as the largest data cache or instruction cache line size in the system, the cacheable
callback may not return different results for different words in the area.

int (*lprintf)(const char *format, ...)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works
like for printf.

int (*vlprintf)(const char *format, va_list ap)
Initialized by TSIM with a function for formatted loggable debug output. The function interface works like
for vprintf.

void (*start)(void)
Called each time simulation starts, both when starting for the first time using go or run command and when
continuing using cont.

void (*stop)(void)
Called every time simulation stops, e.g. due to breakpoints, user pressing Ctrl-C, etc.

void correctable_error(uint32 addr, uint32 master, uint32 size, int write)
Can be called by an AHB module to signal a correctable error to an AHBSTAT core (if present) or a LEON2
memstat. It is intended to be called during handling of a successful read or write. The parameters to supply
corresponds to the register fields to the AHBSTAT registers or LEON2 FAILAR/FAILSR registers (the
rw field in LEON2 FAILSR corresponding to !write).

5.2.3. Big versus little endianess

SPARC conforms to the big endian byte ordering. This means that the most significant byte of a (half) word has
lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated memory is organised
on word basis with the bytes within a word arranged according the endianess of the host. Read cycles can then
be performed without any conversion since SPARC always reads a full 32-bit word. During byte and half word
writes, care must be taken to insert the written data properly into the emulated memory. On a byte-write to address
0, the written byte should be inserted at address 3, since this is the most significant byte according to little endian.
Similarly, on a half-word write to bytes 0/1, bytes 2/3 should be written. For a complete example, see the prom
emulation function in io.c.

5.3. TSIM/LEON co-processor emulation

5.3.1. FPU/CP interface

The professional version of TSIM/LEON can emulate a user-defined floating-point unit (FPU) and co-processor
(CP). The FPU and CP are included into the simulator using loadable modules. To access the module, use the

TSIM2-UM
November 2018, Version 2.0.62

41 www.cobham.com/gaisler

structure ‘cp_interface’ defined in tsim.h. The structure contains a number of functions and variables that must
be provided by the emulated FPU/CP:

/* structure of function to be provided by an external co-processor */
struct cp_interface {
 void (*cp_init)(); /* called once on start-up */
 void (*cp_exit)(); /* called once on exit */
 void (*cp_reset)(); /* calledon processor reset */
 void (*cp_restart)(); /* called on simulator restart */
 uint32 (*cp_reg)(int reg, uint32 data, int read);
 int (*cp_load)(int reg, uint32 data, int *hold);
 int (*cp_store)(int reg, uint32 *data, int *hold);
 int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
 int (*cp_cc)(int *cc, int *hold); /* get condition codes */
 int *cp_status; /* unit status */
 void (*cp_print)(); /* print registers */
 int (*command)(char * cmd); /* CP specific commands */
 int set_fsr(uint32 fsr); /* initialized by tsim */
};
extern struct cp_interface *cp; /* imported co-processor emulation functions */

5.3.2. Structure elements
void (*cp_init)(struct sim_interface sif, struct io_interface iif);

Called once on simulator startup. Set to NULL if not used.
void (*cp_exit)();

Called once on simulator exit. Set to NULL if not used.
void (*cp_reset)();

Called every time the processor is reset. Set to NULL if not used.
void (*cp_restart)();

Called every time the simulator is restarted. Set to NULL if not used.
uint32 (*cp_reg)(int reg, uint32 data, int read);

Used by the simulator to perform diagnostics read and write to the FPU/CP registers. Calling cp_reg()
should not have any side-effects on the FPU/CP status. reg indicates which register to access: 0-31 indi-
cates %f0-%f31/%c0- %31, 34 indicates %fsr/%csr. read indicates read or write access: read==0 indicates
write access, read!=0 indicates read access. Written data is passed in data, the return value contains the
read value on read accesses.

int (*cp_exec)(uint32 pc, uint32 inst, int *hold);
Execute FPU/CP instruction. The %pc is passed in pc and the instruction opcode in inst. If data depen-
dency is emulated, the number of stall cycles should be return in *hold. The return value should be zero
if no trap occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP). A trap can occur
if the FPU/CP is in exception_pending mode when a new FPU/CP instruction is executed.

int (*cp_cc)(int *cc, int *hold); /* get condition codes */
Read condition codes. Used by FBCC/CBCC instructions. The condition codes (0 - 3) should be returned
in *cc. If data dependency is emulated, the number of stall cycles should be return in *hold. The return
value should be zero if no trap occurred or the trap number if a trap did occur (0x8 for the FPU, 0x28 for CP).
A trap can occur if the FPU/CP is in exception_pending mode when a FBCC/CBCC instruction is executed.

int *cp_status;/* unit status */
Should contain the FPU/CP execution status: 0 = execute_mode, 1 = exception_pending, 2 =
exception_mode.

void (*cp_print)();/* print registers */
Should print the FPU/CP registers to stdio.

int (*command)(char * cmd); /* CP specific commands */
User defined FPU/CP control commands. NOT YET IMPLEMENTED.

int (*set_fsr)(char * cmd); /* initialized by tsim */
This callback is initialized by tsim and can be called to set the FPU status register.

5.3.3. Attaching the FPU and CP

At startup the simulator tries to load two dynamic link libraries containing an external FPU or CP. The sim-
ulator looks for the file fp.so and cp.so in the current directory and in the search path defined by ldconfig.
The location of the modules can also be defined using -cpm and -fpm switches. The environmental variable

TSIM2-UM
November 2018, Version 2.0.62

42 www.cobham.com/gaisler

TSIM_MODULE_PATH can be set to a ‘:’ separated (‘;’ in WIN32) list of search paths. Each library is searched
for a pointer ‘cp’ that points to a cp_interface structure describing the co-processor. Below is an example from fp.c:

struct cp_interface test_fpu = {
 cp_init, /* cp_init */
 NULL, /* cp_exit */
 cp_init, /* cp_reset */
 cp_init, /* cp_restart */
 cp_reg, /* cp_reg */
 cp_load, /* cp_load */
 cp_store, /* cp_store */
 fpmeiko, /* cp_exec */
 cp_cc, /* cp_cc */
 &fpregs.fpstate, /* cp_status */
 cp_print, /* cp_print */
 NULL /* cp_command */
};
struct cp_interface *cp = &test_fpu; /* Attach pointer!! */

5.3.4. Big versus little endianess

SPARC is conforms to the big-endian byte ordering. This means that the most significant byte of a (half) word
has lowest address. To execute efficiently on little-endian hosts (such as Intel x86 PCs), emulated register-file is
organised on word basis with the bytes within a word arranged according the endianess of the host. Double words
are also in host order, and the read/write register functions must therefore invert the lsb of the register address
when performing word access on little-endian hosts. See the file fp.c for examples (cp_load(), cp_store()).

5.3.5. Additional TSIM commands
float

Shows the registers of the FPU
cp

Shows the registers of the co-processor.

5.3.6. Example FPU

The file fp.c contains a complete SPARC FPU using the co-processor interface. It can be used as a template for
implementation of other co-processors. Note that data-dependency checking for correct timing is not implemented
in this version (it is however implemented in the built-in version of TSIM).

5.4. Loadable modules distributed with TSIM

The following table shows which loadable modules are distributed with which TSIM versions.

Table 5.1. Loadable modules distributed with TSIM

Module For TSIM versions

Atmel AT697 emulation LEON2

Cobham UT699 emulation LEON3

Cobham UT700 emulation LEON3

Cobham Gaisler GR712RC emulation LEON3

TPS VxWorks AHB Module LEON3/4

Example IO module ERC32, LEON2/3/4

Example AHB module LEON2/3/4

Example FPU/coprocessor module LEON2/3/4

5.4.1. General AHB module limitations

The general AHB module interface allows for the possibility to support checkpointing and to support system reset
during simulation. However, the modules distributed with TSIM does not support these features unless otherwise
noted.

TSIM2-UM
November 2018, Version 2.0.62

43 www.cobham.com/gaisler

The socket base interfaces for the simulation models for cores such as GRETH, GRSPW1, GRSPW2 and CAN_OC
does not support any signalling of restart of the simulation. To ensure a clean restart of simulation when using
these cores, restarting TSIM and reconnecting all such socket interfaces is advisable.

TSIM2-UM
November 2018, Version 2.0.62

44 www.cobham.com/gaisler

6. TSIM library (TLIB)

6.1. Introduction

The professional version of TSIM is also available as a library, allowing the simulator to be integrated in a larger
simulation frame-work. The various TSIM commands and options are accessible through a simple function inter-
face. I/O functions can be added, and use a similar interface to the loadable I/O modules described earlier.

6.2. Function interface

The following functions are provided to access TSIM features:

int tsim_init (char *option);/* initialise tsim with optional params. */
Initialize TSIM - must be called before any other TSIM function (except tsim_set_diag()) are used.
The options string can contain any valid TSIM startup option (as used for the standalone simulator), with
the exception that no filenames for files to be loaded into memory may be given. tsim_init() may
only be called once, use the TSIM reset command to reset the simulator without exiting. tsim_init()
will return 1 on success or 0 on failure.

int tsim_cmd (char *cmd);/* execute tsim command */
Execute TSIM command. Any valid TSIM command-line command may be given. The following return
values are defined:

SIGINT Simulation stopped due to interrupt

SIGHUP Simulation stopped normally

SIGTRAP Simulation stopped due to breakpoint hit

SIGSEGV Simulation stopped due to processor in error mode

SIGTERM Simulation stopped due to program termination

void tsim_exit (int val);
Should be called to cleanup TSIM internal state before main program exits.

void tsim_get_regs (unsigned int *regs);
Get SPARC registers. regs is a pointer to an array of integers, see tsim.h for how the various registers
are indexed.

void tsim_set_regs (unsigned int *regs);
Set SPARC registers. *regs is a pointer to an array of integers, see tsim.h for how the various registers
are indexed.

void tsim_disas(unsigned int addr, int num);
Disassemble memory. addr indicates which address to disassemble, num indicates how many instructions.

void tsim_set_diag (void (*cfunc)(char *));
Set console output function. By default, TSIM writes all diagnostics and console messages on stdout.
tsim_set_diag() can be used to direct all output to a user defined routine. The user function is called
with a single string parameter containing the message to be written.

void tsim_set_callback (void (*cfunc)(void));
Set the debug callback function. Calling tsim_set_callback() with a function pointer will cause
TSIM to call the callback function just before each executed instruction, when the history is enabled. At
this point the instruction to be executed can be seen as the last entry in the history. History can be enabled
with the tsim_cmd() function.

void tsim_gdb (unsigned char (*inchar)(), void (*outchar)(unsigned char c));
Controls the simulator using the gdb ‘extended-remote’ protocol. The inchar parameter is a pointer to a
function that when called, returns next character from the gdb link. The outchar parameter is a pointer
to a function that sends one character to the gdb link.

void tsim_read(unsigned int addr, unsigned int *data);
Performs a read from addr, returning the value in *data. Only for diagnostic use.

void tsim_write(unsigned int addr, unsigned int data);
Performs a write to addr, with value data. Only for diagnostic use.

TSIM2-UM
November 2018, Version 2.0.62

45 www.cobham.com/gaisler

void tsim_stop_event(void (*cfunc)(), int arg, int op);
tsim_stop_event() can remove certain event depending on the setting of arg and op. If op = 0, all
instance of the callback function cfunc will be removed. If op = 1, events with the argument = arg will
be removed. If op = 2, only the first (earliest) of the events with the argument = arg will be removed.

NOTE: The stop_event() function may NOT be called from a signal handler installed by the I/O module.
void tsim_inc_time(uint64);

tsim_inc_time() will increment the simulator time without executing any instructions. The event
queue is evaluated during the advancement of time and the event callbacks are properly called. Can not
be called from event handlers.

int tsim_trap(int (*trap)(int tt), void (*rett)());
tsim_trap() is used to install callback functions that are called every time the processor takes a trap
or returns from a trap (RETT instruction). The trap() function is called with one argument (tt) that
contains the SPARC trap number. If tsim_trap() returns with 0, execution will continue. A non-zero
return value will stop simulation with the program counter pointing to the instruction that will cause the
trap. The rett() function is called when the program counter points to the RETT instruction but before
the instruction is executed. The callbacks are removed by calling tsim_trap() with a NULL arguments.

int tsim_cov_get(int start, int end, char *ptr);
tsim_cov_get() will return the coverage data for the address range >= start and <end. The coverage
data will be written to a char array pointed to by *ptr, starting at ptr[0]. One character per 32-bit word
in the address range will be written. The user must assure that the char array is large enough to hold the
coverage data.

int tsim_cov_set(int start, int end, char val);
tsim_cov_set() will fill the coverage data in the address range limited by start and end (see above
for definition) with the value of val.

int tsim_ext_ins (int (*func) (struct ins_interface *r));
tsim_ext_ins() installs a handler for custom instructions. func is a pointer to an instruction emulation
function as described in Section 4.1.6. Calling tsim_ext_ins() with a NULL pointer will remove the
handler.

int tsim_lastbp (int *addr)
When simulation stopped due to breakpoint or watchpoint hit (SIGTRAP), this function will return the
address of the break/watchpoint in *addr. The function return value indicates the break cause; 0 = break-
point, 1 = watchpoint.

void tsim_set_iosystem (struct io_subsystem *ioarg)
On win32 (excluding cygwin), this installs an I/O module that is built into the TLIB application. It must be
called before calling tsim_init(). See also Section 6.4 for more details.

void tsim_set_ahbsystem (struct ahb_subsystem *ahbarg)
On win32 (excluding cygwin), this installs an AHB module that is built into the TLIB application. It must
be called before calling tsim_init(). See also Section 6.4 for more details.

6.3. External I/O and AHB modules

External I/O and AHB modules can be loaded when using TLIB, just as with standalone TSIM, by adding the -
iom name and -ahbm name switches to the tsim_init() argument string when starting. See Chapter 5 for
further information.

6.4. Builtin I/O module and/or AHB module

The TSIM library can use a builtin I/O module and or a builtin AHB module that is part of the TLIB application
that uses the same I/O interface and AHB interface as the standalone simulator. Instead of loading a shared library
containing the module, the module is linked with the main program (for non-win32, including cygwin) or installed
using the tsim_set_iosystem() and/or tsim_set_ahbsystem() functions (for win32). The I/O and
AHB functions (and the main program) has the same access to the exported simulator interface (simif and ioif)
as described in the loadable module interface.

For non-win32 (including cygwin) the TSIM library imports the I/O structure pointer, struct io_subsystem
*iosystem, and AHB structure pointer struct ahb_subsystem *ahbsystem. These pointers must
exist, but can be set to NULL if no builtin I/O and/or AHB module is present.

TSIM2-UM
November 2018, Version 2.0.62

46 www.cobham.com/gaisler

For win32 (but not cygwin) the tsim_set_iosystem() and tsim_set_ahbsystem() functions is in-
stead used used to install a builtin I/O module and/or a builtin AHB module. If used, these functions must be
called before calling tsim_init(). Calling these functions is optional (unlike the direct linking case where the
pointers must exist).

An example I/O module and an example AHB module, prepared to be builtin, are provided in simple_io.c
and simple_ahb.c. These modules provides a simpler interface to attach I/O functions and AHB functions.
The app1.c example shows how the builtin modules are connected for both the win32 case and for other hosts.
By default the builtin I/O module is the one that is actively used, but by defining USEIO to 0 the builtin AHB
module is instead the one that is actively used.

The following interface is provided by simple_io.c:

void simple_io_set_ioread (void (*cfunc)(int address, int *data, int *ws));
This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O read
access is made. The user function is called with the address of the access, a pointer to where the read data
should be returned, and a pointer to a waitstate variable that should be set to the number of waitstates that
the access took.

void simple_io_set_iowrite (void (*cfunc)(int address, int *data, int *ws,
int size));

This function is used to pass a pointer to a user function which is to be called by TSIM when an I/O write
access is made. The user function is called with the address of the access, a pointer to the data to be written,
a pointer to a waitstate variable that should be set to the number of waitstates that the access took, and the
size of the access (0=byte, 1=half-word, 2=word, 3=double-word).

The interface in simple_ahb.c follows the same principles as the one in simple_io.c, but uses the AHB
interface.

6.5. UART handling

By default, the library is using the same UART handling as the standalone simulator. This means that the UARTs
can be connected to the console, or any Unix device (pseudo-ttys, pipes, fifos). If the UARTs are to be handled
by the user’s I/O emulation routines, tsim_init() should be called with ‘-nouart’, which will disable all
internal UART emulation. Any access to the UART register by an application will then be routed to the I/O module
read/write functions.

6.6. Linking a TLIB application

Three sample application are provided, one that uses the simplified I/O (or simplified AHB interface) interface
(app1.c), and two that uses the standard loadable module interface (app2 and app3). They are built by doing a
‘make all’ in the tlib directory. The win32 version of TSIM provides the library as a DLL, for all other platform
a static library is provided (.a). Support for dynamic libraries on Linux or Solaris is not available.

6.7. Limitations

On Windows/Cygwin hosts a TLIB application is not capable of reading UART A/B from the console, only writing
is possible. If reading of UART A/B is necessary, the simulator should be started with -nouart, and emulation of
the UARTs should be handled by the I/O module.

TSIM2-UM
November 2018, Version 2.0.62

47 www.cobham.com/gaisler

7. Cobham UT699 emulation

To emulate the UT699 chip the -ut699 should be used. That sets up parameters for core TSIM2 to match UT699
and sets snooping as non-functional. In addition, the UT699 loadable AHB module implements emulation models
for additional cores of the UT699. Apart from an overview of what TSIM supports for UT699 emulation, this
chapter is mainly about the UT699 AHB module.

The following table lists which cores in the UT699 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and some in the UT699 AHB module. The table contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 7.1. Simulation models for UT699

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.

GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled

GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module Including DMA controller

GRSPW Supported by AHB module

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT699 AHB module. User defined models can also override the simulation models in the UT699 AHB
module.

7.1. Overview of the UT699 AHB module

The UT699 AHB module is a loadable AHB module that implements UT699 peripherals in addition to what is
emulated by core TSIM as listed in Table 7.1. The interfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT699 to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT699 AHB module is only supported for
TSIM2 LEON3.

The following files are delivered with the UT699 TSIM module:

Table 7.2. Files delivered with the UT699 TSIM module

File Description

ut699/linux/ut699.so UT699 AHB module for Linux

TSIM2-UM
November 2018, Version 2.0.62

48 www.cobham.com/gaisler

File Description

ut699/win32/ut699.dll UT699 AHB module for Windows

ut699/examples/input The input directory contains two examples of PCI user
modules

ut699/examples/input/README.txt Description of the user module examples

ut699/examples/input/pci.c PCI user module example that makes UT699 PCI initia-
tor accesses

ut699/examples/input/pci_target.c PCI user module example that makes UT699 PCI target
accesses

ut699/examples/input/gpio.c GPIO user module example

ut699/examples/input/ut699inputprovider.h Interface between the UT699 module and the user de-
fined PCI module

ut699/examples/input/pci_input.h UT699 PCI input provider definitions

ut699/examples/input/input.h Generic input provider definitions

ut699/examples/input/tsim.h TSIM interface definitions

ut699/examples/input/end.h Defines the endian of the local machine

ut699/examples/test The test directory contains tests that can be executed in
TSIM

ut699/examples/test/README.txt Description of the tests

ut699/examples/test/Makefile Makefile for building the tests

ut699/examples/test/cansend.c CAN transmission test

ut699/examples/test/canrec.c CAN reception test

ut699/examples/test/pci.c PCI interface test

ut699/examples/test/pcitest.h Header file for PCI test

7.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. A user input module for SPI and PCI can optionally be
declared, between -designinput and -designinputend options. For example:

On Linux:

tsim-leon3 -ut699 -ahbm ut699/linux/ut699.so
 -designinput ./input.so -designinputend

On Windows:

tsim-leon3 -ut699 -ahbm ut699/win32/ut699.dll
 -designinput input.dll -designinputend

The option -ut699 needs to be given to TSIM to enable the UT699 processor configuration. The above line
loads the UT699 AHB module ut699.so which in turn loads the user user input module ./input.so. The
user input module ./input.so communicates with ut699.so using the user module interface described in
ut699inputprovider.h, while ut699.so communicates with TSIM via the AHB interface.

Example user input modules can be found in ut699/examples/input/.

7.2.1. User input module interface

The SPI and PCI models in the UT699 module uses a user supplied user input module, in the form of a dynamic
loadable library, that models the outside world. This section describes the general interface for hooking up the user
module to the UT699 module. The details on the interfaces to the particular cores, see their respective sections.

TSIM2-UM
November 2018, Version 2.0.62

49 www.cobham.com/gaisler

A user supplied dynamic library should expose a public symbol ut699inputsystem of type struct
ut699_subsystem *. The struct ut699_subsystem is defined in ut699inputprovider.h as:

struct ut699_subsystem {
 void (*ut699_inp_setup) (int id,
 struct ut699_inp_layout * l,
 char **argv, int argc);
 void (*ut699_inp_restart) (int id,
 struct ut699_inp_layout * l);
 struct sim_interface *simif;
};

The callback ut699_inp_restart will be called every time the simulator restarts. At initialization the callback
ut699_inp_setup will be called once, supplied with a pointer to structure struct ut699_inp_layout
defined in ut699inputprovider.h.

struct ut699_inp_layout {
 struct grpci_input grpci;
 struct gpio_input gpio;
};

The user module can access the global TSIM struct sim_interface structure through the simif member.
See Chapter 5 for more details.

The user supplied dynamic library should, in its ut699_inp_setup function, “claim” the input structs it uses
using theINPUT_CLAIM macro. For example INPUT_CLAIM(l->gpio) as in the example below.

A user supplied dynamic library that only sets up a model for GPIO could look like this:

#include <stdio.h>
#include <string.h>
#include "tsim.h"
#include "ut699inputprovider.h"

extern struct ut699_subsystem *ut699inputsystem;
static struct ut699_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
 ...
}

static void ut699_inp_setup (int id,
 struct ut699_inp_layout * l,
 char **argv, int argc) {
 lay = l;
 printf("User-dll: ut699_inp_setup:Claiming %s\n", l->gpio._b.name);
 INPUT_CLAIM(l->gpio);
 l->gpio.gpioout = gpioout;
 ut699inputsystem->simif->event(Change,(unsigned long)&l->gpio,10000000);
}

static struct ut699_subsystem ut699_gpio = {
 ut699_inp_setup,0,0
};

struct ut699_subsystem *ut699inputsystem = &ut699_gpio;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)

all: gpio.$(M_DLL_FIX)

gpio.$(M_DLL_FIX) : gpio.o
 $(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

gpio.o: gpio.c
 $(CC) -fPIC -c -g -O0 gpio.c -o gpio.o

TSIM2-UM
November 2018, Version 2.0.62

50 www.cobham.com/gaisler

clean:
 -rm -f *.o *.so

The user can then specify the user module to be loaded by the ut699.so AHB module using the -designinput
and -designinputend command line options. The first argument after -designinput is the user module.
Arguments after that are passed to the user input module in the call to ut699_inp_setup.

For example: -designinput ut699/examples/input/gpio.so -gpioverbose -designin-
putend will specify that the example user input module gpio.so should be used and that it should receive
the argument -gpioverbose.

7.3. Debugging

To enable printout of debug information the -ut699_dbgon flag switch can be used. Alternatively one can
issue the ut699_dbgon flag command on the TSIM2 command line to toggle the on/off state of a flag. The debug
flags that are available are described for each core in the following sections and can be listed by ut699_dbgon help.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

7.4. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
UT699. For core details and register specification please see the UT699 manual.

The following features are supported:

• Direct Memory Access
• Interrupts

7.4.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

7.4.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

7.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.3. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

TSIM2-UM
November 2018, Version 2.0.62

51 www.cobham.com/gaisler

Flag Trace

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

7.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It can provide a
throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README for usage instructions.

7.4.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 1 for Ethernet

7:5 TYPE Packet type: 0 for data packets

4:0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 7.1. Ethernet data packet

7.5. SpaceWire interface with RMAP support

The UT699 AHB module contains 4 GRSPW cores which models the GRSPW cores available in the UT699. For
core details and register specification please see the UT699 manual.

The UT699E AHB module has GRSPW2 cores instead of GRSPW cores. So, for UT699E see Section 9.5 instead.

The following features are supported:

• Transmission and reception of SpaceWire packets
• Interrupts
• RMAP

TSIM2-UM
November 2018, Version 2.0.62

52 www.cobham.com/gaisler

7.5.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_rxfreq freq
Set the RX frequency which is used to calculate receive performance.

-grspw_txfreq freq
Set the TX frequency which is used to calculate transmission performance.

X in the above options has the range 1-4.

7.5.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for core X on specified TCP port.

grspw_status
Print status for all GRSPW cores.

X in the above commands has the range 1-4.

7.5.3. Debug flags

The following debug flags are available for the SpaceWire interfaces. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 7.4. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

7.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server.

7.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. Three different types of packets are
defined according to the table below.

Table 7.5. Packet types

Type Value

Data 0

Time code 1

TSIM2-UM
November 2018, Version 2.0.62

53 www.cobham.com/gaisler

Note that all packets are prepended by a one word length field which specified the length of the coming packet
including the header.

7.5.5.1. Data packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 1 0

R IPID TYPE R EE

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data packets

4:1 R Reserved for future use. Must be set to 0.

0 EE Error End of Packet. Set when the packet is truncated and terminated by an EEP.

Offset 0x8: The rest of the packet is the encapsulated SpaceWire packet

Figure 7.2. SpaceWire data packet

7.5.5.2. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 7.3. SpaceWire time code packet

TSIM2-UM
November 2018, Version 2.0.62

54 www.cobham.com/gaisler

7.6. PCI initiator/target interface

The UT699 AHB module models the PCI core available in the UT699 ASIC. For core details and register speci-
fication please see the UT699 manual.

7.6.1. Connecting a user PCI model with the UT699 module
See Section 7.2 for details on how to connect the user PCI model to the UT699 module.

7.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

7.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 7.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB register accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

GAISLER_GRPCI_INIT Print summary on startup

7.6.4. PCI bus model API

The structure struct grpci_input models the PCI bus. It is defined as:

struct grpci_input {
 struct input_inp _b;

 int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort, unsigned int *ws);

 int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);
};

The acc callback should be set by the PCI user module at startup. It is called by the UT699 module whenever it
reads/writes as a PCI bus master.

Table 7.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 7.6.2 details.

addr PCI address.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

The return value of acc determines if the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

TSIM2-UM
November 2018, Version 2.0.62

55 www.cobham.com/gaisler

The callback target_acc is installed by the UT699 AHB module. The PCI user dynamic library can call this function
to initiate an access to the UT699 PCI target.

Table 7.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 7.6.2 for details. I/O cycles are not sup-
ported by the UT699 target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0 if access is successful, 1 in case of target abort.

If the address matched MEMBAR0, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

See the ut699/examples/input for example implementations.

7.7. GPIO interface

7.7.1. Connecting a user GPIO model with the UT699 module
See Section 7.2 for details on how to connect the user GPIO model to the UT699 module.

7.7.2. Commands

GPIO Commands

gpio0_status
Print status for the GPIO core.

gpio0_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

7.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAISLER_GPIO_*
flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut699_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 7.9. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

all Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

7.7.4. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

TSIM2-UM
November 2018, Version 2.0.62

56 www.cobham.com/gaisler

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the UT699
AHB module. The gpioout callback is called by the UT699 module whenever a GPIO output pin changes. The
gpioin callback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpioin from within the event handler.

Table 7.10. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 7.11. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

See the ut699/examples/input for an example implementation.

7.8. CAN interface

The UT699 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT699.
For core details and register specification please see the UT699 manual.

7.8.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after -can_ocX_connect.

X in the above options is in the range 1-2.

7.8.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is in the range 1-2.

7.8.3. Debug flags

The following debug flags and debug subcommands are available for CAN interfaces. The GAISLER_CAN_OC_*
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and

TSIM2-UM
November 2018, Version 2.0.62

57 www.cobham.com/gaisler

with the ut699_dbgon command to toggle individual flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 7.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

7.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single con-
nection.

7.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 7.13. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

7.8.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 7.4. CAN message packet format

TSIM2-UM
November 2018, Version 2.0.62

58 www.cobham.com/gaisler

7.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 7.5. Error counter packet format

7.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 7.6. Acknowledge packet format

7.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 7.7. Acknowledge configuration packet format

TSIM2-UM
November 2018, Version 2.0.62

59 www.cobham.com/gaisler

8. Cobham UT699E emulation

To emulate the UT699E chip the -ut699e should be used. That sets up parameters for core TSIM2 to match
UT699E. In addition, the UT699E loadable AHB module implements emulation models for additional cores of
the UT699E. Apart from an overview of what TSIM supports for UT699E emulation, this chapter is mainly about
the UT699E AHB module.

The following table lists which cores in the UT699E are modelled by TSIM or not. Some supported cores are
modelled by the core TSIM2 and some in the UT699E AHB module. The table contains some notes of some
unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4
for details on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 8.1. Simulation models for UT699E

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.

GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled

GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module Including DMA controller

GRSPW2 Supported by AHB module

CLKGATE Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT699E AHB module. User defined models can also override the simulation models in the UT699E
AHB module.

8.1. Overview of the UT699E AHB module

The UT699E AHB module is a loadable AHB module that implements UT699E peripherals in addition to what is
emulated by core TSIM as listed in Table 8.1. The interfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT699E to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT699E AHB module is only supported for
TSIM2 LEON3.

The following files are delivered with the UT699E TSIM module:

Table 8.2. Files delivered with the UT699E TSIM module

File Description

ut699/linux/ut699e.so UT699E AHB module for Linux

TSIM2-UM
November 2018, Version 2.0.62

60 www.cobham.com/gaisler

File Description

ut699/win32/ut699e.dll UT699E AHB module for Windows

ut699/examples/input The input directory contains two examples of PCI user
modules

ut699/examples/input/README.txt Description of the user module examples

ut699/examples/input/pci.c PCI user module example that makes UT699E PCI ini-
tiator accesses

ut699/examples/input/pci_target.c PCI user module example that makes UT699E PCI tar-
get accesses

ut699/examples/input/gpio.c GPIO user module example

ut699/examples/input/ut699inputprovider.h Interface between the UT699E module and the user de-
fined PCI module

ut699/examples/input/pci_input.h UT699E PCI input provider definitions

ut699/examples/input/input.h Generic input provider definitions

ut699/examples/input/tsim.h TSIM interface definitions

ut699/examples/input/end.h Defines the endian of the local machine

ut699/examples/test The test directory contains tests that can be executed in
TSIM

ut699/examples/test/README.txt Description of the tests

ut699/examples/test/Makefile Makefile for building the tests

ut699/examples/test/cansend.c CAN transmission test

ut699/examples/test/canrec.c CAN reception test

ut699/examples/test/pci.c PCI interface test

ut699/examples/test/pcitest.h Header file for PCI test

8.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. A user input module for SPI and PCI can optionally be
declared, between -designinput and -designinputend options. For example:

On Linux:

tsim-leon3 -ut699e -ahbm ut699/linux/ut699e.so
 -designinput ./input.so -designinputend

On Windows:

tsim-leon3 -ut699e -ahbm ut699/win32/ut699e.dll
 -designinput input.dll -designinputend

The option -ut699e needs to be given to TSIM to enable the UT699E processor configuration. The above line
loads the UT699E AHB module ut699e.so which in turn loads the user user input module ./input.so. The
user input module ./input.so communicates with ut699e.so using the user module interface described in
ut699inputprovider.h, while ut699e.so communicates with TSIM via the AHB interface.

Example user input modules can be found in ut699/examples/input/.

8.2.1. User input module interface

The SPI and PCI models in the UT699E module uses a user supplied user input module, in the form of a dynamic
loadable library, that models the outside world. This section describes the general interface for hooking up the user
module to the UT699E module. The details on the interfaces to the particular cores, see their respective sections.

TSIM2-UM
November 2018, Version 2.0.62

61 www.cobham.com/gaisler

A user supplied dynamic library should expose a public symbol ut699inputsystem of type struct
ut699_subsystem *. The struct ut699_subsystem is defined in ut699inputprovider.h as:

struct ut699_subsystem {
 void (*ut699_inp_setup) (int id,
 struct ut699_inp_layout * l,
 char **argv, int argc);
 void (*ut699_inp_restart) (int id,
 struct ut699_inp_layout * l);
 struct sim_interface *simif;
};

The callback ut699_inp_restart will be called every time the simulator restarts. At initialization the callback
ut699_inp_setup will be called once, supplied with a pointer to structure struct ut699_inp_layout
defined in ut699inputprovider.h.

The user module can access the global TSIM struct sim_interface structure through the simif member.
See Chapter 5 for more details.

The user supplied dynamic library should, in its ut699_inp_setup function, “claim” the input structs it uses
using theINPUT_CLAIM macro. For example INPUT_CLAIM(l->gpio) as in the example below.

A user supplied dynamic library that only sets up a model for GPIO could look like this:

#include <stdio.h>
#include <string.h>
#include "tsim.h"
#include "ut699inputprovider.h"

extern struct ut699_subsystem *ut699inputsystem;
static struct ut699_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
 ...
}

static void ut699_inp_setup (int id,
 struct ut699_inp_layout * l,
 char **argv, int argc) {
 lay = l;
 printf("User-dll: ut699_inp_setup:Claiming %s\n", l->gpio._b.name);
 INPUT_CLAIM(l->gpio);
 l->gpio.gpioout = gpioout;
 ut699inputsystem->simif->event(Change,(unsigned long)&l->gpio,10000000);
}

static struct ut699_subsystem ut699_gpio = {
 ut699_inp_setup,0,0
};

struct ut699_subsystem *ut699inputsystem = &ut699_gpio;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)

all: gpio.$(M_DLL_FIX)

gpio.$(M_DLL_FIX) : gpio.o
 $(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

gpio.o: gpio.c
 $(CC) -fPIC -c -g -O0 gpio.c -o gpio.o

clean:
 -rm -f *.o *.so

The user can then specify the user module to be loaded by the ut699e.so AHB module using the -designinput
and -designinputend command line options. The first argument after -designinput is the user module.
Arguments after that are passed to the user input module in the call to ut699_inp_setup.

TSIM2-UM
November 2018, Version 2.0.62

62 www.cobham.com/gaisler

For example: -designinput ut699/examples/input/gpio.so -gpioverbose -designin-
putend will specify that the example user input module gpio.so should be used and that it should receive
the argument -gpioverbose.

8.3. Debugging

To enable printout of debug information the -ut699_dbgon flag switch can be used. Alternatively one can
issue the ut699_dbgon flag command on the TSIM2 command line to toggle the on/off state of a flag. The debug
flags that are available are described for each core in the following sections and can be listed by ut699_dbgon help.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

8.4. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
UT699E. For core details and register specification please see the UT699E manual.

The following features are supported:

• Direct Memory Access
• Interrupts

8.4.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

8.4.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

8.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut699_dbgon command to enable different levels of debug information.

Table 8.3. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

TSIM2-UM
November 2018, Version 2.0.62

63 www.cobham.com/gaisler

Flag Trace

GAISLER_GRETH_IRQ GRETH interrupts

8.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It can provide a
throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README for usage instructions.

8.4.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 1 for Ethernet

7:5 TYPE Packet type: 0 for data packets

4:0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 8.1. Ethernet data packet

8.5. SpaceWire interface with RMAP support

The UT699E AHB module contains 4 GRSPW2 cores which models the GRSPW2 cores available in the UT699E.
For core details and register specification please see the UT699E manual.

Supported features include:

• Transmission and reception of SpaceWire packets
• Transmission and reception of Time codes
• RMAP
• Server side link state model
• Link errors
• Link error injection

All GRSPW2 register fields with underlying functionality in the UT699E are supported except for:

• The link model is only in error reset state or run state.
• The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.

TSIM2-UM
November 2018, Version 2.0.62

64 www.cobham.com/gaisler

• The limitations of the No spill (NS) DMA control register as noted in the section on Flow control limitations
below.

8.5.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_spwfreq freq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.

-grspw_clkdiv value
Sets the reset value for the clock divisor register for all GRSPW2 cores.

-grspw_tx_max_part_len len
Sets up all GRSPW2 cores to transmit any SpaceWire packet longer than len in data part packets with
no more thatn len bytes of data.

-grspw_simple 1
Set all GRSPW2 cores to “simple mode”. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.

-grspw_simple_rxfreq freq
Sets the RX frequency in MHz for all GRSPW2 cores to freq. This is only valid together with the -
grspw_simple 1 option.

X in the above options has the range 1-4.

8.5.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_status
Print status for GRSPW2 core X.

grspwX_dbg [argument]
Sets, clears, lists, toggles debug options for individual GRSPW2 cores. Using grspwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all
argument will turn on all debug options. The clean argument will turn off all debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 1-4.

8.5.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAISLER_GRSPW_* flags can be used with the grspwX_dbg command to toggle individual flags for individual
SpaceWire cores and with the ut699_dbgon command to toggle individual flags for all SpaceWire cores. The
subcommmands can be used with the grspwX_dbg command to change and list the settings of all flags for indi-
vidual SpaceWire cores.

Table 8.4. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

TSIM2-UM
November 2018, Version 2.0.62

65 www.cobham.com/gaisler

Flag Trace

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

GAISLER_GRSPW_RMAP GRSPW RMAP accesses

GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR GRSPW DMA errors

GAISLER_GRSPW_LINK Link changes

GAISLER_GRSPW_PART TX/RX of GRSPW data part packets

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

8.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errors to the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

8.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 8.5. Packet types

Type Value Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state

RX frequency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart

TSIM2-UM
November 2018, Version 2.0.62

66 www.cobham.com/gaisler

from the data part packet type, where data follows the header byte-wise, all fields are 32-bit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW2 model
and the server side link model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Use the -grspw_tx_max_part_len
to set up GRSPW2 model to split up SpaceWire packets into data parts in order for such events to be able to
happen during the data stream.

8.5.5.1. Flow control limitations

Flow control in terms of credit is not modeled between two ends of a link. A transmitter gets no notice if the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel
has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during this time.

8.5.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to 0 or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. Therefore, the receiver should delay for
the amount of simulated time it takes to receive the part before handling the next packet in the socket.

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes in the part

Header at offset 0x4:

31 16 15 8 7 5 4 2 1 0

R IPID TYPE R END

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data part packets

4:2 R Reserved for future use. Must be set to 0.

1:0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 8.2. SpaceWire data part packet

TSIM2-UM
November 2018, Version 2.0.62

67 www.cobham.com/gaisler

8.5.5.3. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 8.3. SpaceWire time code packet

8.5.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Error Reset and Run. A link state packet with state Error Reset can have the ERROR field
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

TSIM2-UM
November 2018, Version 2.0.62

68 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 3 2 0

R ERROR IPID TYPE R LS

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 0: None, 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2:0 LS Link State: 0: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 8.4. SpaceWire link state packet

8.5.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of the link is
in start mode, autostart mode, and/or has the link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than a factor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM
November 2018, Version 2.0.62

69 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 12

Header at offset 0x4:

31 16 15 8 7 5 4 3 2 1 0

R IPID TYPE R AS LS LD

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.

2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:

31 0

SFREQ

31:0 SFREQ Startup frequency in MHz, big endian IEEE-754 32-bit float

TX frequency in MHz at offset 0xc:

31 0

TFREQ

31:0 TFREQ TX frequency in MHz, big endian in IEEE-754 32-bit float

Figure 8.5. SpaceWire link control packet

8.5.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side
transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changes its TX frequency.

TSIM2-UM
November 2018, Version 2.0.62

70 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 4 for rx frequency packets

4:0 R Reserved for future use. Must be set to 0.

RX frequency in MHz at offset 0x8:

31 0

RFREQ

31:0 RFREQ RX frequency in MHz, big endian IEEE-754 32-bit float

Figure 8.6. SpaceWire rx frequency packet

8.5.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified is the link error that is seen at the targeted end. The OE bit determines which end of the link is the
targeted end, i.e. will see the error.

If the OE bit is set to 1, the error will be seen at the receiver of the simulation model on the other end. The simulation
model on the client side will see a disconnect error via a link state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent a data part packet with no end marker followed
by a link error injection packet.

If the OE bit is set to 0, the error will be seen at the receiver on the client end. The simulation model at the client
end will see the requested error via a link state packet. The simulation model at the other end will see a disconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. The link state packet will not be sent by the
server side link model until all previous packets have been handled, and the client should handle all other packets
queued up before that link state packet can be handled. To inject a link error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM
November 2018, Version 2.0.62

71 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 21 20 19 18 16 15 8 7 5 4 0

R OE R ERROR IPID TYPE R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 5 for link error injection packets

4:0 R Reserved for future use. Must be set to 0.

Figure 8.7. SpaceWire link error injection packet

8.5.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, via a link state
packet, by the client as a result. The other side will see a disconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other side to the client the link error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at a time.

The grspwX_status command can be issued for the targeted GRSPW2 core to see how many SpaceWire packets
have currently been sent by that core. This includes started but aborted SpaceWire packets, due to link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW2 core.

TSIM2-UM
November 2018, Version 2.0.62

72 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 16

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 0

R ERROR IPID TYPE R

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 6 for packet error request packets

4:0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31:0 MSW Bits 63:32 of unsigned 64-bit big endian integer

Packet number to request error for, least significant word at offset 0xc:

31 0

LSW

31:0 LSW Bits 31:0 of unsigned 64-bit big endian integer

Reserved field at offset 0x10:

31 0

R

31:0 R Reserved for future use. Must be set to 0.

Figure 8.8. SpaceWire packet error request packet

8.5.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW2 models can be set up in “simple mode”
with the -grspw_simple 1 option. This makes the following changes to the simulation model for all GRSPW2
cores:

• The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

• Data part packets should always contain full SpaceWire packets. The -grspw_tx_max_part_len should
not be used together with simple mode and data part packets without end marker should be sent to a GRSPW2
model when using simple mode.

• The link state that a GRSPW2 core percieves is solely determined by its own link control setting. The other
end is assumed to try to start the link. In other words, run state is achieved once the GRSPW2 is set to start or
autostart without having link disable set. Moreover, startup frequencies are ignored and run state is achieved
without any delay.

TSIM2-UM
November 2018, Version 2.0.62

73 www.cobham.com/gaisler

• The RX frequency is determined primarily by the -grspw_simple_rxfreq option. If that is not used, the
RX frequencty is taken by the -grspw_spwfreq option. If none of those options are set the CPU frequency
is used. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

8.6. PCI initiator/target interface

The UT699E AHB module models the PCI core available in the UT699E ASIC. For core details and register
specification please see the UT699E manual.

8.6.1. Connecting a user PCI model with the UT699E module
See Section 8.2 for details on how to connect the user PCI model to the UT699E module.

8.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

8.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut699_dbgon
command to enable different levels of debug information.

Table 8.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB register accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

GAISLER_GRPCI_INIT Print summary on startup

8.6.4. PCI bus model API

The structure struct grpci_input models the PCI bus. It is defined as:

struct grpci_input {
 struct input_inp _b;

 int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort, unsigned int *ws);

 int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);
};

The acc callback should be set by the PCI user module at startup. It is called by the UT699E module whenever
it reads/writes as a PCI bus master.

Table 8.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 8.6.2 details.

addr PCI address.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

TSIM2-UM
November 2018, Version 2.0.62

74 www.cobham.com/gaisler

Parameter Description

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

The return value of acc determines if the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

The callback target_acc is installed by the UT699E AHB module. The PCI user dynamic library can call this
function to initiate an access to the UT699E PCI target.

Table 8.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 8.6.2 for details. I/O cycles are not sup-
ported by the UT699E target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0 if access is successful, 1 in case of target abort.

If the address matched MEMBAR0, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

See the ut699/examples/input for example implementations.

8.7. GPIO interface

8.7.1. Connecting a user GPIO model with the UT699E module
See Section 8.2 for details on how to connect the user GPIO model to the UT699E module.

8.7.2. Commands

GPIO Commands

gpio0_status
Print status for the GPIO core.

gpio0_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

8.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAISLER_GPIO_*
flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut699_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 8.9. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

all Set all GPIO debug flags for the core

TSIM2-UM
November 2018, Version 2.0.62

75 www.cobham.com/gaisler

Flag/subcommand Trace

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

8.7.4. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the UT699E
AHB module. The gpioout callback is called by the UT699E module whenever a GPIO output pin changes.
The gpioin callback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpioin from within the event handler.

Table 8.10. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 8.11. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

See the ut699/examples/input for an example implementation.

8.8. CAN interface

The UT699E AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT699E.
For core details and register specification please see the UT699E manual.

8.8.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after -can_ocX_connect.

X in the above options is in the range 1-2.

8.8.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2-UM
November 2018, Version 2.0.62

76 www.cobham.com/gaisler

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is in the range 1-2.

8.8.3. Debug flags

The following debug flags and debug subcommands are available for CAN interfaces. The GAISLER_CAN_OC_*
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the ut699_dbgon command to toggle individual flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 8.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

8.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single con-
nection.

8.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 8.13. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

8.8.5.1. CAN message packet format

Used to send and receive CAN messages.

TSIM2-UM
November 2018, Version 2.0.62

77 www.cobham.com/gaisler

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 8.9. CAN message packet format

8.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 8.10. Error counter packet format

8.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 8.11. Acknowledge packet format

TSIM2-UM
November 2018, Version 2.0.62

78 www.cobham.com/gaisler

8.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 8.12. Acknowledge configuration packet format

TSIM2-UM
November 2018, Version 2.0.62

79 www.cobham.com/gaisler

9. Cobham UT700 emulation

To emulate the UT700 chip the -ut700 should be used. That sets up parameters for core TSIM2 to match UT700
and sets snooping as non-functional. In addition, the UT700 loadable AHB module implements emulation models
for additional cores of the UT700. Apart from an overview of what TSIM supports for UT700 emulation, this
chapter is mainly about the UT700 AHB module.

The following table lists which cores in the UT700 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and some in the UT700 AHB module. The table contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 9.1. Simulation models for UT700

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.

GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled

GPTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRPCI Supported by AHB module Including DMA controller

GRSPW Supported by AHB module

SPICTRL Supported by AHB module

CLKGATE Not supported

GR1553B Not supported

GRTC Not supported

GRTM Not supported

AHBJTAG Not supported Debug link

AHBUART Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the UT700 AHB module. User defined models can also override the simulation models in the UT700 AHB
module.

9.1. Overview of the UT700 AHB module

The UT700 AHB module is a loadable AHB module that implements UT700 peripherals in addition to what is
emulated by core TSIM as listed in Table 9.1. The interfaces are modelled at packet/transaction/message level and
provides an easy way to connect the simulated UT700 to a larger simulation framework. See also Section 5.4.1
on some limitations of some features when using this module. The UT700 AHB module is only supported for
TSIM2 LEON3.

The following files are delivered with the UT700 TSIM module:

TSIM2-UM
November 2018, Version 2.0.62

80 www.cobham.com/gaisler

Table 9.2. Files delivered with the UT700 TSIM module

File Description

ut700/linux/ut700.so UT700 AHB module for Linux

ut700/win32/ut700.dll UT700 AHB module for Windows

ut700/examples/input The input directory contains two examples of PCI user
modules

ut700/examples/input/README.txt Description of the user module examples

ut700/examples/input/Makefile Makefile for building the user modules

ut700/examples/input/pci.c PCI user module example that makes UT700 PCI ini-
tiator accesses

ut700/examples/input/pci_target.c PCI user module example that makes UT700 PCI target
accesses

ut700/examples/input/ut700inputprovider.h Interface between the UT700 module and the user de-
fined PCI module

ut700/examples/input/pci_input.h UT700 PCI input provider definitions

ut700/examples/input/input.h Generic input provider definitions

ut700/examples/input/tsim.h TSIM interface definitions

ut700/examples/input/end.h Defines the endian of the local machine

ut700/examples/test The test directory contains tests that can be executed in
TSIM

ut700/examples/test/README.txt Description of the tests

ut700/examples/test/Makefile Makefile for building the tests

ut700/examples/test/cansend.c CAN transmission test

ut700/examples/test/canrec.c CAN reception test

ut700/examples/test/pci.c PCI interface test

ut700/examples/test/pcitest.h Header file for PCI test

9.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. A user input module for SPI, GPIO and PCI can optionally
be declared, between -designinput and -designinputend options. For example:

On Linux:

tsim-leon3 -ut700 -ahbm ut700/linux/ut700.so
 -designinput ./input.so -designinputend

On Windows:

tsim-leon3 -ut700 -ahbm ut700/win32/ut700.dll
 -designinput input.dll -designinputend

The option -ut700 needs to be given to TSIM to enable the UT700 processor configuration. The above line
loads the UT700 AHB module ut700.so which in turn loads the user user input module ./input.so. The
user input module ./input.so communicates with ut700.so using the user module interface described in
ut700inputprovider.h, while ut700.so communicates with TSIM via the AHB interface.

Example user input modules can be found in ut700/examples/input/.

9.2.1. User input module interface

The SPI, GPIO and PCI models in the UT700 module uses a user supplied user input module, in the form of a
dynamic loadable library, that models the outside world. This section describes the general interface for hooking

TSIM2-UM
November 2018, Version 2.0.62

81 www.cobham.com/gaisler

up the user module to the UT700 module. The details on the interfaces to the particular cores, see their respective
sections.

A user supplied dynamic library should expose a public symbol ut700inputsystem of type struct
ut700_subsystem *. The struct ut700_subsystem is defined in ut700inputprovider.h as:

struct ut700_subsystem {
 void (*ut700_inp_setup) (int id,
 struct ut700_inp_layout * l,
 char **argv, int argc);
 void (*ut700_inp_restart) (int id,
 struct ut700_inp_layout * l);
 struct sim_interface *simif;
};

The callback ut700_inp_restart will be called every time the simulator restarts. At initialization the callback
ut700_inp_setup will be called once, supplied with a pointer to structure struct ut700_inp_layout
defined in ut700inputprovider.h.

struct ut700_inp_layout {
 struct grpci_input grpci;
 struct gpio_input gpio;
 struct spi_input spi;
};

The user module can access the global TSIM struct sim_interface structure through the simif member.
See Chapter 5 for more details.

The user supplied dynamic library should, in its ut700_inp_setup function, “claim” the input structs it uses
using theINPUT_CLAIM macro. For example INPUT_CLAIM(l->gpio) as in the example below.

A user supplied dynamic library that only sets up a model for GPIO could look like this:

#include <stdio.h>
#include <string.h>
#include "tsim.h"
#include "ut700inputprovider.h"

extern struct ut700_subsystem *ut700inputsystem;
static struct ut700_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
 ...
}

static void ut700_inp_setup (int id,
 struct ut700_inp_layout * l,
 char **argv, int argc) {
 lay = l;
 printf("User-dll: ut700_inp_setup:Claiming %s\n", l->gpio._b.name);
 INPUT_CLAIM(l->gpio);
 l->gpio.gpioout = gpioout;
 ut700inputsystem->simif->event(Change,(unsigned long)&l->gpio,10000000);
}

static struct ut700_subsystem ut700_gpio = {
 ut700_inp_setup,0,0
};

struct ut700_subsystem *ut700inputsystem = &ut700_gpio;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)

all: gpio.$(M_DLL_FIX)

gpio.$(M_DLL_FIX) : gpio.o
 $(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

TSIM2-UM
November 2018, Version 2.0.62

82 www.cobham.com/gaisler

gpio.o: gpio.c
 $(CC) -fPIC -c -g -O0 gpio.c -o gpio.o

clean:
 -rm -f *.o *.so

The user can then specify the user module to be loaded by the ut700.so AHB module using the -designinput
and -designinputend command line options. The first argument after -designinput is the user module.
Arguments after that are passed to the user input module in the call to ut700_inp_setup.

For example: -designinput ut700/examples/input/gpio.so -gpioverbose -designin-
putend will specify that the example user input module gpio.so should be used and that it should receive
the argument -gpioverbose.

9.3. Debugging

To enable printout of debug information the -ut700_dbgon flag switch can be used. Alternatively one can
issue the ut700_dbgon flag command on the TSIM2 command line to toggle the on/off state of a flag. The debug
flags that are available are described for each core in the following sections and can be listed by ut700_dbgon help.

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

9.4. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
UT700. For core details and register specification please see the UT700 manual.

The following features are supported:

• Direct Memory Access
• Interrupts

9.4.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

9.4.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

9.4.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
ut700_dbgon command to enable different levels of debug information.

Table 9.3. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

TSIM2-UM
November 2018, Version 2.0.62

83 www.cobham.com/gaisler

Flag Trace

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

9.4.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It can provide a
throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README for usage instructions.

9.4.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 1 for Ethernet

7:5 TYPE Packet type: 0 for data packets

4:0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 9.1. Ethernet data packet

9.5. SpaceWire interface with RMAP support

The UT700 AHB module contains 4 GRSPW2 cores which models the GRSPW2 cores available in the UT700.
For core details and register specification please see the UT700 manual.

Supported features include:

• Transmission and reception of SpaceWire packets
• Transmission and reception of Time codes
• RMAP
• Server side link state model

TSIM2-UM
November 2018, Version 2.0.62

84 www.cobham.com/gaisler

• Link errors
• Link error injection

All GRSPW2 register fields with underlying functionality in the UT700 are supported except for:

• The link model is only in error reset state or run state.
• The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
• The port loopback (Loop) bit in the control register with underlying functionality is not modelled.
• The limitations of the No spill (NS) DMA control register as noted in the section on Flow control limitations

below.

9.5.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_spwfreq freq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.

-grspw_clkdiv value
Sets the reset value for the clock divisor register for all GRSPW2 cores.

-grspw_tx_max_part_len len
Sets up all GRSPW2 cores to transmit any SpaceWire packet longer than len in data part packets with
no more thatn len bytes of data.

-grspw_simple 1
Set all GRSPW2 cores to “simple mode”. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.

-grspw_simple_rxfreq freq
Sets the RX frequency in MHz for all GRSPW2 cores to freq. This is only valid together with the -
grspw_simple 1 option.

X in the above options has the range 1-4.

9.5.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_status
Print status for GRSPW2 core X.

grspwX_dbg [argument]
Sets, clears, lists, toggles debug options for individual GRSPW2 cores. Using grspwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all
argument will turn on all debug options. The clean argument will turn off all debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 1-4.

9.5.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAISLER_GRSPW_* flags can be used with the grspwX_dbg command to toggle individual flags for individual
SpaceWire cores and with the ut700_dbgon command to toggle individual flags for all SpaceWire cores. The
subcommmands can be used with the grspwX_dbg command to change and list the settings of all flags for indi-
vidual SpaceWire cores.

TSIM2-UM
November 2018, Version 2.0.62

85 www.cobham.com/gaisler

Table 9.4. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

GAISLER_GRSPW_RMAP GRSPW RMAP accesses

GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR GRSPW DMA errors

GAISLER_GRSPW_LINK Link changes

GAISLER_GRSPW_PART TX/RX of GRSPW data part packets

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

9.5.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errors to the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

9.5.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 9.5. Packet types

Type Value Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state

RX frequency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

TSIM2-UM
November 2018, Version 2.0.62

86 www.cobham.com/gaisler

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-bit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW2 model
and the server side link model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Use the -grspw_tx_max_part_len
to set up GRSPW2 model to split up SpaceWire packets into data parts in order for such events to be able to
happen during the data stream.

9.5.5.1. Flow control limitations

Flow control in terms of credit is not modeled between two ends of a link. A transmitter gets no notice if the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel
has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during this time.

9.5.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to 0 or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. Therefore, the receiver should delay for
the amount of simulated time it takes to receive the part before handling the next packet in the socket.

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes in the part

Header at offset 0x4:

31 16 15 8 7 5 4 2 1 0

R IPID TYPE R END

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data part packets

4:2 R Reserved for future use. Must be set to 0.

1:0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 9.2. SpaceWire data part packet

TSIM2-UM
November 2018, Version 2.0.62

87 www.cobham.com/gaisler

9.5.5.3. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 9.3. SpaceWire time code packet

9.5.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Error Reset and Run. A link state packet with state Error Reset can have the ERROR field
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

TSIM2-UM
November 2018, Version 2.0.62

88 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 3 2 0

R ERROR IPID TYPE R LS

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 0: None, 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2:0 LS Link State: 0: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 9.4. SpaceWire link state packet

9.5.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of the link is
in start mode, autostart mode, and/or has the link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than a factor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM
November 2018, Version 2.0.62

89 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 12

Header at offset 0x4:

31 16 15 8 7 5 4 3 2 1 0

R IPID TYPE R AS LS LD

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.

2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:

31 0

SFREQ

31:0 SFREQ Startup frequency in MHz, big endian IEEE-754 32-bit float

TX frequency in MHz at offset 0xc:

31 0

TFREQ

31:0 TFREQ TX frequency in MHz, big endian in IEEE-754 32-bit float

Figure 9.5. SpaceWire link control packet

9.5.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side
transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changes its TX frequency.

TSIM2-UM
November 2018, Version 2.0.62

90 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 4 for rx frequency packets

4:0 R Reserved for future use. Must be set to 0.

RX frequency in MHz at offset 0x8:

31 0

RFREQ

31:0 RFREQ RX frequency in MHz, big endian IEEE-754 32-bit float

Figure 9.6. SpaceWire rx frequency packet

9.5.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified is the link error that is seen at the targeted end. The OE bit determines which end of the link is the
targeted end, i.e. will see the error.

If the OE bit is set to 1, the error will be seen at the receiver of the simulation model on the other end. The simulation
model on the client side will see a disconnect error via a link state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent a data part packet with no end marker followed
by a link error injection packet.

If the OE bit is set to 0, the error will be seen at the receiver on the client end. The simulation model at the client
end will see the requested error via a link state packet. The simulation model at the other end will see a disconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. The link state packet will not be sent by the
server side link model until all previous packets have been handled, and the client should handle all other packets
queued up before that link state packet can be handled. To inject a link error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM
November 2018, Version 2.0.62

91 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 21 20 19 18 16 15 8 7 5 4 0

R OE R ERROR IPID TYPE R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 5 for link error injection packets

4:0 R Reserved for future use. Must be set to 0.

Figure 9.7. SpaceWire link error injection packet

9.5.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, via a link state
packet, by the client as a result. The other side will see a disconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other side to the client the link error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at a time.

The grspwX_status command can be issued for the targeted GRSPW2 core to see how many SpaceWire packets
have currently been sent by that core. This includes started but aborted SpaceWire packets, due to link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW2 core.

TSIM2-UM
November 2018, Version 2.0.62

92 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 16

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 0

R ERROR IPID TYPE R

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 6 for packet error request packets

4:0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31:0 MSW Bits 63:32 of unsigned 64-bit big endian integer

Packet number to request error for, least significant word at offset 0xc:

31 0

LSW

31:0 LSW Bits 31:0 of unsigned 64-bit big endian integer

Reserved field at offset 0x10:

31 0

R

31:0 R Reserved for future use. Must be set to 0.

Figure 9.8. SpaceWire packet error request packet

9.5.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW2 models can be set up in “simple mode”
with the -grspw_simple 1 option. This makes the following changes to the simulation model for all GRSPW2
cores:

• The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

• Data part packets should always contain full SpaceWire packets. The -grspw_tx_max_part_len should
not be used together with simple mode and data part packets without end marker should be sent to a GRSPW2
model when using simple mode.

• The link state that a GRSPW2 core percieves is solely determined by its own link control setting. The other
end is assumed to try to start the link. In other words, run state is achieved once the GRSPW2 is set to start or
autostart without having link disable set. Moreover, startup frequencies are ignored and run state is achieved
without any delay.

TSIM2-UM
November 2018, Version 2.0.62

93 www.cobham.com/gaisler

• The RX frequency is determined primarily by the -grspw_simple_rxfreq option. If that is not used, the
RX frequencty is taken by the -grspw_spwfreq option. If none of those options are set the CPU frequency
is used. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

9.6. PCI initiator/target interface

The UT700 AHB module models the PCI core available in the UT700 ASIC. For core details and register speci-
fication please see the UT700 manual.

9.6.1. Connecting a user PCI model with the UT700 module
See Section 9.2 for details on how to connect the user PCI model to the UT700 module.

9.6.2. Commands

PCI Commands

pci_status
Print status for the PCI core

9.6.3. Debug flags

The following debug flags are available for the PCI interface. Use them in conjunction with the ut700_dbgon
command to enable different levels of debug information.

Table 9.6. PCI interface debug flags

Flag Trace

GAISLER_GRPCI_ACC AHB accesses to/from PCI core

GAISLER_GRPCI_REGACC GRPCI APB register accesses

GAISLER_GRPCI_DMA_REGACC PCIDMA APB register accesses

GAISLER_GRPCI_DMA GRPCI DMA accesses on the AHB bus

GAISLER_GRPCI_TARGET_ACC GRPCI target accesses

GAISLER_GRPCI_INIT Print summary on startup

9.6.4. PCI bus model API

The structure struct grpci_input models the PCI bus. It is defined as:

struct grpci_input {
 struct input_inp _b;

 int (*acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *abort, unsigned int *ws);

 int (*target_acc)(struct grpci_input *ctrl, int cmd, unsigned int addr,
 unsigned int *data, unsigned int *mexc);
};

The acc callback should be set by the PCI user module at startup. It is called by the UT700 module whenever it
reads/writes as a PCI bus master.

Table 9.7. acc callback parameters

Parameter Description

cmd Command to execute, see Section 9.6.2 details.

addr PCI address.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

TSIM2-UM
November 2018, Version 2.0.62

94 www.cobham.com/gaisler

Parameter Description

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

The return value of acc determines if the transaction terminates successfully (1, GRPCI_ACC_OK) or with master
abort (0, GRPCI_ACC_MASTER_ABORT).

The callback target_acc is installed by the UT700 AHB module. The PCI user dynamic library can call this function
to initiate an access to the UT700 PCI target.

Table 9.8. target_acc parameters

Parameter Description

cmd Command to execute, see Section 9.6.2 for details. I/O cycles are not sup-
ported by the UT700 target.

addr PCI address. Should always be word aligned for read accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

mexc 0 if access is successful, 1 in case of target abort.

If the address matched MEMBAR0, MEMBAR1 or CONFIG target_acc will return 1 otherwise 0.

See the ut700/examples/input for example implementations.

9.7. GPIO interface

9.7.1. Connecting a user GPIO model with the UT700 module
See Section 9.2 for details on how to connect the user GPIO model to the UT700 module.

9.7.2. Commands

GPIO Commands

gpio0_status
Print status for the GPIO core.

gpio0_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

9.7.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAISLER_GPIO_*
flags can be used with the gpio0_dbg command to toggle individual flags for individual GPIO cores and with the
ut700_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpio0_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 9.9. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

all Set all GPIO debug flags for the core

TSIM2-UM
November 2018, Version 2.0.62

95 www.cobham.com/gaisler

Flag/subcommand Trace

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

9.7.4. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the UT700
AHB module. The gpioout callback is called by the UT700 module whenever a GPIO output pin changes. The
gpioin callback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpioin from within the event handler.

Table 9.10. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 9.11. gpioin callback parameters

Parameter Description

in The input pin values

The return value of gpioin/gpioout is ignored.

See the ut700/examples/input for an example implementation.

9.8. CAN interface

The UT700 AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the UT700.
For core details and register specification please see the UT700 manual.

9.8.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after -can_ocX_connect.

X in the above options is in the range 1-2.

9.8.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

TSIM2-UM
November 2018, Version 2.0.62

96 www.cobham.com/gaisler

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is in the range 1-2.

9.8.3. Debug flags

The following debug flags and debug subcommands are available for CAN interfaces. The GAISLER_CAN_OC_*
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the ut700_dbgon command to toggle individual flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 9.12. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

9.8.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single con-
nection.

9.8.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 9.13. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

9.8.5.1. CAN message packet format

Used to send and receive CAN messages.

TSIM2-UM
November 2018, Version 2.0.62

97 www.cobham.com/gaisler

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 9.9. CAN message packet format

9.8.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 9.10. Error counter packet format

9.8.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 9.11. Acknowledge packet format

TSIM2-UM
November 2018, Version 2.0.62

98 www.cobham.com/gaisler

9.8.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 9.12. Acknowledge configuration packet format

9.9. SPI interface

9.9.1. Connecting a user SPI model with the UT700 module
See Section 9.2 for details on how to connect the user SPI model to the UT700 module.

9.9.2. Commands

SPI Commands

spi0_status
Print status for the SPI core.

spi0_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the SPI core.

9.9.3. Debug flags

The following debug flags and debug subcommands are available for SPI interfaces. The GAISLER_SPI_*
flags can be used with the spi0_dbg command to toggle individual flags for individual SPI cores and with the
ut700_dbgon command to toggle individual flags for all SPI cores. The subcommmands can be used with the
spi0_dbg command to change and list the settings of all flags for individual SPI cores.

Table 9.14. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPI interrupts

all Set all SPI debug flags for the core

clean Set none of the SPI debug flags for the core

list List the current setting of the debug flags for the core

9.9.4. SPI bus model API

The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

TSIM2-UM
November 2018, Version 2.0.62

99 www.cobham.com/gaisler

struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
 uint32 out, uint32 *in);
};

The spishift callback should be set by the SPI user module at startup. It is called by the UT700 module whenever
it shifts a word through the SPI bus.

Table 9.15. spishift callback parameters

Parameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a shift
and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

The return value of spishift is ignored.

See the ut700/examples/input directory for an example implementation.

TSIM2-UM
November 2018, Version 2.0.62

100 www.cobham.com/gaisler

10. Cobham Gaisler GR712RC emulation

To emulate the GR712RC chip the -gr712rc should be used. That sets up parameters for core TSIM2 to match
GR712RC. In addition, the GR712RC loadable AHB module implements emulation models for additional cores
of the GR712RC. Apart from an overview of what TSIM supports for GR712RC emulation, this chapter is mainly
about the GR712RC AHB module.

The following table lists which cores in the GR712RC are modelled by TSIM or not. Some supported cores are
modelled by the core TSIM2 and some in the GR712RC AHB module. The table contains some notes of some
unsupported features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4
for details on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 10.1. Simulation models for GR712RC

Core Status Notes

LEON3FT Supported by core TSIM2 Only one CPU is modelled. No FT features are modelled.

GRFPU Supported by core TSIM2

AHBSTAT Supported by core TSIM2

APBCTRL Supported by core TSIM2

APBUART Supported by core TSIM2

FTMCTRL Supported by core TSIM2 No FT features are modelled

GPTIMER Supported by core TSIM2

GRTIMER Supported by core TSIM2

IRQMP Supported by core TSIM2

CAN_OC Supported by AHB module

FTAHBRAM Supported by AHB module No FT features are modelled.

GRETH Supported by AHB module

GRGPIO Supported by AHB module

GRSPW2 Supported by AHB module

SPICTRL Supported by AHB module

CANMUX Dummy in AHB module Functionality-less registers only

CLKGATE Dummy in AHB module Functionality-less registers only

GRGPREG Dummy in AHB module Functionality-less registers only

B1553BRM Not supported

GRASCS Not supported

GRSLINK Not supported

GRTC Not supported

GRTM Not supported

I2CMST Not supported

AHBJTAG Not supported Debug link

DSU3 Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the GR712RC AHB module. User defined models can also override the simulation models (such as for
dummy models) in the GR712RC AHB module.

10.1. Overview of the GR712RC AHB module

The GR712RC AHB module is a loadable AHB module that implements GR712RC peripherals in addition to
what is emulated by core TSIM as listed in Table 10.1. The interfaces are modelled at packet/transaction/message

TSIM2-UM
November 2018, Version 2.0.62

101 www.cobham.com/gaisler

level and provides an easy way to connect the simulated GR712RC to a larger simulation framework. See also
Section 5.4.1 on some limitations of some features when using this module. The GR712RC AHB module is only
supported for TSIM2 LEON3.

The following files are delivered with the GR712RC TSIM module:

Table 10.2. Files delivered with the GR712RC TSIM module

File Description

gr712/linux/gr712.so GR712RC AHB module for Linux

gr712/win32/gr712.dll GR712RC AHB module for Windows

gr712/examples/input The input directory contains two examples of user modules

gr712/examples/input/README.txt Description of the user module examples

gr712/examples/input/Makefile Makefile for building the user modules

gr712/examples/input/spi.c SPI user module example emulating a Intel SPI flash

gr712/examples/input/gpio.c GPIO user module emulating GPIO bit toggle

gr712/examples/input/gr712inputprovider.h Interface between the GR712RC module and the user module

10.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. A user input module for SPI and GPIO can optionally be
declared, between -designinput and -designinputend options. For example:

On Linux:

tsim-leon3 -gr712rc -ahbm gr712/linux/gr712.so
 -designinput ./input.so -designinputend

On Windows:

tsim-leon3 -gr712rc -ahbm gr712/win32/gr712.dll
 -designinput input.dll -designinputend

The option -gr712rc needs to be given to TSIM to enable the GR712RC processor configuration. The above
line loads the GR712RC AHB module gr712.so which in turn loads the user user input module ./input.so.
The user input module ./input.so communicates with gr712.so using the user module interface described
in gr712inputprovider.h, while gr712.so communicates with TSIM via the AHB interface.

Example user input modules can be found in gr712/examples/input/.

10.2.1. User input module interface

The SPI and GPIO models in the GR712RC module uses a user supplied user input module, in the form of a
dynamic loadable library, that models the outside world. This section describes the general interface for hooking up
the user module to the GR712RC module. The details on the interfaces to the particular cores, see their respective
sections.

A user supplied dynamic library should expose a public symbol gr712inputsystem of type struct
gr712_subsystem *. The struct gr712_subsystem is defined in gr712inputprovider.h as:

struct gr712_subsystem {
 void (*gr712_inp_setup) (int id,
 struct gr712_inp_layout * l,
 char **argv, int argc);
 void (*gr712_inp_restart) (int id,
 struct gr712_inp_layout * l);
 struct sim_interface *simif;
};

TSIM2-UM
November 2018, Version 2.0.62

102 www.cobham.com/gaisler

The callback gr712_inp_restart will be called every time the simulator restarts. At initialization the callback
gr712_inp_setup will be called once, supplied with a pointer to structure struct gr712_inp_layout
defined in gr712inputprovider.h.

The user module can access the global TSIM struct sim_interface structure through the simif member.
See Chapter 5 for more details.

The user supplied dynamic library should, in its gr712_inp_setup function, “claim” the input structs it uses
using theINPUT_CLAIM macro. For example INPUT_CLAIM(l->gpio[0]) as in the example below.

A user supplied dynamic library that only sets up a model for GPIO could look like this:

#include <stdio.h>
#include <string.h>
#include "tsim.h"
#include "gr712inputprovider.h"

extern struct gr712_subsystem *gr712inputsystem;
static struct gr712_inp_layout *lay = 0;

static void Change(struct gpio_input *ctrl) {
 ...
}

int gpioout(struct gpio_input *ctrl, unsigned int out) {
 ...
}

static void gr712_inp_setup (int id,
 struct gr712_inp_layout * l,
 char **argv, int argc) {
 lay = l;
 printf("User-dll: gr712_inp_setup:Claiming %s\n", l->gpio[0]._b.name);
 INPUT_CLAIM(l->gpio[0]);
 l->gpio[0].gpioout = gpioout;
 gr712inputsystem->simif->event(Change,(unsigned long)&l->gpio[0],10000000);
}

static struct gr712_subsystem gr712_gpio = {
 gr712_inp_setup,0,0
};

struct gr712_subsystem *gr712inputsystem = &gr712_gpio;

A Makefile that would build a user supplied dynamic library gpio.(dll|so) could look like this:

M_DLL_FIX=$(if $(strip $(shell uname|grep MINGW32)),dll,so)
M_LIB=$(if $(strip $(shell uname|grep MINGW32)),-lws2_32 -luser32 -lkernel32 -lwinmm,)

all: gpio.$(M_DLL_FIX)

gpio.$(M_DLL_FIX) : gpio.o
 $(CC) -shared -g gpio.o -o gpio.$(M_DLL_FIX) $(M_LIB)

gpio.o: gpio.c
 $(CC) -fPIC -c -g -O0 gpio.c -o gpio.o

clean:
 -rm -f *.o *.so

The user can then specify the user module to be loaded by the gr712.so AHB module using the -designinput
and -designinputend command line options. The first argument after -designinput is the user module.
Arguments after that are passed to the user input module in the call to gr712_inp_setup.

For example: -designinput gr712/examples/input/gpio.so -gpioverbose -designin-
putend will specify that the example user input module gpio.so should be used and that it should receive
the argument -gpioverbose.

10.3. Debugging

To enable printout of debug information the -gr712_dbgon flag switch can be used. Alternatively one can
issue the gr712_dbgon flag command on the TSIM2 command line to toggle the on/off state of a flag. The debug
flags that are available are described for each core in the following sections and can be listed by gr712_dbgon help.

TSIM2-UM
November 2018, Version 2.0.62

103 www.cobham.com/gaisler

Many cores also have their own debug commands on the format coreX_dbg that targets single cores instead of
all of one kind and that have support to set all or none of the debug flags options and list the current setting for
the debug flags. See the sections on the respective cores for details.

10.4. CAN interface

The GR712RC AHB module contains 2 CAN_OC cores which models the CAN_OC cores available in the
GR712RC. For core details and register specification please see the GR712RC manual.

10.4.1. Start up options

CAN core start up options

-can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

-can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

-can_ocX_ack [0|1]
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This option
must be put after -can_ocX_connect.

X in the above options is in the range 0-1.

10.4.2. Commands

CAN core TSIM commands

can_ocX_connect host:port
Connect CAN_OC core X to packet server to specified server and TCP port.

can_ocX_server port
Open a packet server for CAN_OC core X on specified TCP port.

can_ocX_ack <0|1>
Specifies whether the CAN_OC core will wait for a acknowledgment packet on transmission. This com-
mand should only be issued after a connection has been established.

can_ocX_status
Prints out status information for the CAN_OC core.

can_ocX_dbg
Toggle, set, clear, list debug flags for the CAN_OC core.

X in the above commands is in the range 0-1.

10.4.3. Debug flags

The following debug flags and debug subcommands are available for CAN interfaces. The GAISLER_CAN_OC_*
flags can be used with the can_ocX_dbg command to toggle individual flags for individual CAN_OC cores and
with the gr712_dbgon command to toggle individual flags for all CAN_OC cores. The subcommmands can be
used with the can_ocX_dbg command to change and list the settings of all flags for individual CAN_OC cores.

Table 10.3. CAN debug flags

Flag Trace

GAISLER_CAN_OC_ACC CAN_OC register accesses

GAISLER_CAN_OC_RXPACKET CAN_OC received messages

GAISLER_CAN_OC_TXPACKET CAN_OC transmitted messages

GAISLER_CAN_OC_ACK CAN_OC acknowledgements

GAISLER_CAN_OC_IRQ CAN_OC interrupts

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

TSIM2-UM
November 2018, Version 2.0.62

104 www.cobham.com/gaisler

10.4.4. Packet server

Each CAN_OC core can be configured independently as a packet server or client using either -
can_ocX_server or -can_ocX_connect. When acting as a server the core can only accept a single con-
nection.

10.4.5. CAN packet server protocol

The protocol used to communicate with the packet server is described below. Four different types of packets are
defined according to the table below.

Table 10.4. CAN packet types

Type Value

Message 0x00

Error counter 0xFD

Acknowledge 0xFE

Acknowledge config 0xFF

10.4.5.1. CAN message packet format

Used to send and receive CAN messages.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

CAN message

Byte # Description Bits (MSB-LSB)

7 6 5 4 3 2 1 0

4 Protocol ID = 0 Prot ID 7-0

5 Control FF RTR - - DLC (max 8 bytes)

6-9 ID (32 bit word in network byte
order)

ID 10-0 (bits 31 - 11 ignored for standard frame format)
ID 28-0 (bits 31-29 ignored for extended frame format)

10-17 Data byte 1 - DLC Data byte n 7-0

Figure 10.1. CAN message packet format

10.4.5.2. Error counter packet format

Used to write the RX and TX error counter of the modelled CAN interface.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Error counter packet

Byte # Field Description

4 Packet type Type of packet, 0xFD for error counter packets

5 Register 0 - RX error counter, 1 - TX error counter

6 Value Value to write to error counter

Figure 10.2. Error counter packet format

TSIM2-UM
November 2018, Version 2.0.62

105 www.cobham.com/gaisler

10.4.5.3. Acknowledge packet format

If the acknowledge function has been enabled through the start up option or command the CAN interface will wait
for an acknowledge packet each time it transmits a message. To enable the CAN receiver to send acknowledge
packets (either NAK or ACK) an acknowledge configuration packet must be sent. This is done automatically by
the CAN interface when can_ocX_ack is issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge packet

Byte # Field Description

4 Packet type Type of packet, 0xFE for acknowledge packets

5 Ack payload 0 - No acknowledge, 1 - Acknowledge

Figure 10.3. Acknowledge packet format

10.4.5.4. Acknowledge packet format

This packet is used for enabling/disabling the transmission of acknowledge packets and their payload (ACK
or NAK) by the CAN receiver. The CAN transmitter will always wait for an acknowledge if started with -
can_ocX_ack or if the can_ocX_ack command has been issued.

31 0

0x0 LENGTH

31:0 LENGTH, specifies the length of the rest of the packet

Acknowledge configuration packet

Byte # Field Description

4 Packet type Type of packet, 0xFF for acknowledge configuration packets

bit 0 Unused

bit 1 Ack packet enable, 1 - enabled, 0 - disabled

5 Ack configuration

bit 2 Set ack packet payload, 1 - ACK, 0 - NAK

Figure 10.4. Acknowledge configuration packet format

10.5. 10/100 Mbps Ethernet Media Access Controller interface

The Ethernet core simulation model is designed to functionally model the 10/100 Ethernet MAC available in the
GR712RC. For core details and register specification please see the GR712RC manual.

The following features are supported:

• Direct Memory Access
• Interrupts

10.5.1. Start up options

Ethernet core start up options

-grethconnect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

TSIM2-UM
November 2018, Version 2.0.62

106 www.cobham.com/gaisler

10.5.2. Commands

Ethernet core TSIM commands

greth_connect host[:port]
Connect Ethernet core to a packet server at the specified host and port. Default port is 2224.

greth_status
Print Ethernet register status

10.5.3. Debug flags

The following debug flags are available for the Ethernet interface. Use the them in conjunction with the
gr712_dbgon command to enable different levels of debug information.

Table 10.5. Ethernet debug flags

Flag Trace

GAISLER_GRETH_ACC GRETH accesses

GAISLER_GRETH_L1 GRETH accesses verbose

GAISLER_GRETH_TX GRETH transmissions

GAISLER_GRETH_RX GRETH reception

GAISLER_GRETH_RXPACKET GRETH received packets

GAISLER_GRETH_RXCTRL GRETH RX packet server protocol

GAISLER_GRETH_RXBDCTRL GRETH RX buffer descriptors DMA

GAISLER_GRETH_RXBDCTRL GRETH TX packet server protocol

GAISLER_GRETH_TXPACKET GRETH transmitted packets

GAISLER_GRETH_IRQ GRETH interrupts

10.5.4. Ethernet packet server

The simulation model relies on a packet server to receive and transmit the Ethernet packets. The packet server
should open a TCP socket which the module can connect to. The Ethernet core is connected to a packet server
using the -grethconnect start-up parameter or using the greth_connect command.

An example implementation of a packet server, named greth_config, is included in TSIM distribution. It
uses the TUN/TAP interface in Linux, or the WinPcap library on Windows, to connect the GRETH core to a
physical Ethernet LAN. This makes it easy to connect the simulated GRETH core to real hardware. It can provide a
throughput in the order of magnitude of 500 to 1000 KiB/sec. See its distributed README for usage instructions.

10.5.5. Ethernet packet server protocol

Ethernet data packets have the following format. Note that each packet is prepended with a one word length field
indicating the length of the packet to come (including its header).

TSIM2-UM
November 2018, Version 2.0.62

107 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 1 for Ethernet

7:5 TYPE Packet type: 0 for data packets

4:0 R Reserved for future use. Must be set to 0.

Offset 0x8: The rest of the packet is the encapsulated Ethernet packet

Figure 10.5. Ethernet data packet

10.6. SpaceWire interface with RMAP support

The GR712RC AHB module contains 6 GRSPW2 cores which models the GRSPW2 cores available in the
GR712RC. For core details and register specification please see the GR712RC manual.

Supported features include:

• Transmission and reception of SpaceWire packets
• Transmission and reception of Time codes
• RMAP
• Server side link state model
• Link errors
• Link error injection

All GRSPW2 register fields with underlying functionality in the GR712RC are supported except for:

• The link model is only in error reset state or run state.
• The RMAP buffer disable (RD) bit in the control register with underlying functionality is not modelled.
• The limitations of the No spill (NS) DMA control register as noted in the section on Flow control limitations

below.

10.6.1. Start up options

SpaceWire core start up options

-grspwX_connect host:port
Connect GRPSW core X to packet server at specified server and port.

-grspwX_server port
Open a packet server for core X on specified port.

-grspw_spwfreq freq
Sets the SpaceWire input clock frequency. Combined with the clock divisor register, this determines the
startup frquency and TX frequency.

-grspw_clkdiv value
Sets the reset value for the clock divisor register for all GRSPW2 cores.

-grspw_tx_max_part_len len
Sets up all GRSPW2 cores to transmit any SpaceWire packet longer than len in data part packets with
no more thatn len bytes of data.

TSIM2-UM
November 2018, Version 2.0.62

108 www.cobham.com/gaisler

-grspw_simple 1
Set all GRSPW2 cores to “simple mode”. This can be used for backward compatibility with TSIM 2.0.44
and backwards. See the separate section on simple mode for details. Note the needed 1 argument.

-grspw_simple_rxfreq freq
Sets the RX frequency in MHz for all GRSPW2 cores to freq. This is only valid together with the -
grspw_simple 1 option.

X in the above options has the range 0-5.

10.6.2. Commands

SpaceWire core TSIM commands

grspwX_connect host:port
Connect GRSPW2 core X to packet server at specified server and TCP port.

grspwX_server port
Open a packet server for GRSPW2 core X on specified TCP port.

grspwX_status
Print status for GRSPW2 core X.

grspwX_dbg [argument]
Sets, clears, lists, toggles debug options for individual GRSPW2 cores. Using grspwX_dbg without any
arguments will list all available options. The list argument will list current debug option settings. The all
argument will turn on all debug options. The clean argument will turn off all debug options. Using one of
the available debug options as argument will toggle that debug option. See the section below.

X in the above commands has the range 0-5.

10.6.3. Debug flags

The following debug flags and debug subcommands are available for SpaceWire interfaces. The
GAISLER_GRSPW_* flags can be used with the grspwX_dbg command to toggle individual flags for individual
SpaceWire cores and with the gr712_dbgon command to toggle individual flags for all SpaceWire cores. The
subcommmands can be used with the grspwX_dbg command to change and list the settings of all flags for indi-
vidual SpaceWire cores.

Table 10.6. SpaceWire debug flags

Flag Trace

GAISLER_GRSPW_ACC GRSPW accesses

GAISLER_GRSPW_RXPACKET GRSPW received packets

GAISLER_GRSPW_RXCTRL GRSPW rx protocol

GAISLER_GRSPW_TXPACKET GRSPW transmitted packets

GAISLER_GRSPW_TXCTRL GRSPW tx protocol

GAISLER_GRSPW_RMAP GRSPW RMAP accesses

GAISLER_GRSPW_RMAPPACKET GRSPW RMAP packet dumps

GAISLER_GRSPW_RMAPPACKDE GRSPW RMAP packet decoding

GAISLER_GRSPW_DMAERR GRSPW DMA errors

GAISLER_GRSPW_LINK Link changes

GAISLER_GRSPW_PART TX/RX of GRSPW data part packets

all Set all debug flags for the core

clean Set none of the debug flags for the core

list List the current setting of the debug flags for the core

TSIM2-UM
November 2018, Version 2.0.62

109 www.cobham.com/gaisler

10.6.4. SpaceWire packet server

Each SpaceWire core can be configured independently as a packet server or client using either -
grspwX_server or -grspwX_connect. TCP sockets are used for establishing the connections. When acting
as a server the core can only accept a single connection.

A connection should be set up before starting simulation for the first time, and must not be broken after that.
Restarting the simulation will not tear down the connection, nor emptying any socket buffers.

The server side contains a link model that gets control information from the models at each end of the link,
determines the link state and communicates frequencies and link errors to the two models at each ends of the link.
It also supports error injection via two error injection packet types that can be sent from a custom client. See the
the following sections for details.

For more flexibility, such as custom routing, an external packet server can be implemented using the protocol
specified in the following sections. Each core should then be connected to that server. That server would also
have to implement a link model that at least reacts to link control packets and sends out link state packets and
RX frequency packets.

10.6.5. SpaceWire packet server protocol

The protocol used to communicate with the packet server is described below. The different types of packets are
defined according to the table below.

Table 10.7. Packet types

Type Value Direction Notes

Data part 0 Both Only when in run state

Time code 1 Both Only when in run state

Link state 2 Server to client

Link control 3 Client to server Must be sent for model to reach run state

RX frequency 4 Server to client

Error injection 5 Client to server Optional

Packet error request 6 Client to server Optional

All packets begin with a 32-bit big endian word length field which specifies the length of the rest of the packet,
including header and other fixed fields. For most packet types this length is fixed for the particular type. Apart
from the data part packet type, where data follows the header byte-wise, all fields are 32-bit big endian words if
not otherwise specified.

All packets received by the GRSPW2 model are handled sequentially, and all packets sent by the GRSPW2 model
and the server side link model are supposed to be handled sequentially by the client. SpaceWire packets can be split
into multiple data parts, transferred in data part packets. Between such parts other packets such as for time codes,
link state changes, link control changes, etc., can be handled. During the simulated time span for the reception of a
data part, the receiver will not/should not handle any other packet types. Use the -grspw_tx_max_part_len
to set up GRSPW2 model to split up SpaceWire packets into data parts in order for such events to be able to
happen during the data stream.

10.6.5.1. Flow control limitations

Flow control in terms of credit is not modeled between two ends of a link. A transmitter gets no notice if the other
end cannot give more credit. If the no-spill bit in the GRSPW2 core is set and an enabled receiving DMA channel
has no enabled descriptors, the data part packet will be held on the receiving side until a descriptor is available.
Due to the sequential nature of the packet model a link error, time code, etc. will not be handled at all by the
GRSPW2 model during this time.

TSIM2-UM
November 2018, Version 2.0.62

110 www.cobham.com/gaisler

10.6.5.2. Data part packet format

A SpaceWire packet is represented by one or more data parts. A data part packet represents one such a part. For
the data parts of a multi part SpaceWire packet, only the last data part should have an EOP or EEP end marker,
i.e. the END field set to 0 or 1. The other parts should have no end marker, i.e. the END field set to 2. Each data
part is delivered in its entirety or not at all. A link error occurring between data parts on the other hand cuts the
SpaceWire packet short and is considered the end of that SpaceWire packet.

A data part packet is sent at the beginning of transmission of the corresponding part of the SpaceWire packet, so
that the receiver can start reacting to it as soon as the transmission starts. Therefore, the receiver should delay for
the amount of simulated time it takes to receive the part before handling the next packet in the socket.

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4 + number of data bytes in the part

Header at offset 0x4:

31 16 15 8 7 5 4 2 1 0

R IPID TYPE R END

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 0 for data part packets

4:2 R Reserved for future use. Must be set to 0.

1:0 END End marker: 0: Normal End of Packet, 1: Error End of Packet, 2: No end marker

Offset 0x8: The data bytes of the part starts here

Figure 10.6. SpaceWire data part packet

TSIM2-UM
November 2018, Version 2.0.62

111 www.cobham.com/gaisler

10.6.5.3. Time code packet format

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 1 for time code packets

4:0 R Reserved for future use. Must be set to 0.

Payload at offset 0x8:

31 8 7 6 5 0

R CT CN

31:8 R Reserved for future use. Must be set to 0.

7:6 CT Time control flags

5:0 CN Value of time counter

Figure 10.7. SpaceWire time code packet

10.6.5.4. Link state packet format

Link state packets are sent out by the server side link model when the link state changes. The only states currently
simulated are Error Reset and Run. A link state packet with state Error Reset can have the ERROR field
set to an error seen at the receiver. Other link state packets has only None in the ERROR field.

TSIM2-UM
November 2018, Version 2.0.62

112 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 3 2 0

R ERROR IPID TYPE R LS

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 0: None, 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 2 for link state packets

4:3 R Reserved for future use. Must be set to 0.

2:0 LS Link State: 0: Error reset, 1: Error wait, 2: Ready, 3: Started, 4: Connecting, 5: Run

Figure 10.8. SpaceWire link state packet

10.6.5.5. Link control packet format

A link control packet must be sent from a client to the server side link model to inform if that side of the link is
in start mode, autostart mode, and/or has the link disabled. In addition, the control packet contains information on
the startup frequency and the TX frequency that will be used once run state is reached. A new link control packet
should be sent from a client any time any of these parameters change.

If the startup frequencies of the two ends differ by more than a factor 1.1/0.9, the link model will reach run state.
This limit is chosen based on the limits on timeout periods in the SpaceWire standard that must be within 10%
up or down from nominal frequency. So even though the startup frequency should be 10 MHz, run state can be
reached if startup frequencies are close enough.

TSIM2-UM
November 2018, Version 2.0.62

113 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 12

Header at offset 0x4:

31 16 15 8 7 5 4 3 2 1 0

R IPID TYPE R AS LS LD

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 3 for link control packets

4:3 R Reserved for future use. Must be set to 0.

2 AS Link autostart.

1 LS Link start.

0 LD Link disable.

Startup frequency in MHz at offset 0x8:

31 0

SFREQ

31:0 SFREQ Startup frequency in MHz, big endian IEEE-754 32-bit float

TX frequency in MHz at offset 0xc:

31 0

TFREQ

31:0 TFREQ TX frequency in MHz, big endian in IEEE-754 32-bit float

Figure 10.9. SpaceWire link control packet

10.6.5.6. RX frequency packet format

The server side link model sends out this packet type to inform the client of with what frequency the other side
transmits with when in run state. A new packet of this type is sent any time the transmitter on the other side
changes its TX frequency.

TSIM2-UM
November 2018, Version 2.0.62

114 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 8

Header at offset 0x4:

31 16 15 8 7 5 4 0

R IPID TYPE R

31:16 R Reserved for future use. Must be set to 0.

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 4 for rx frequency packets

4:0 R Reserved for future use. Must be set to 0.

RX frequency in MHz at offset 0x8:

31 0

RFREQ

31:0 RFREQ RX frequency in MHz, big endian IEEE-754 32-bit float

Figure 10.10. SpaceWire rx frequency packet

10.6.5.7. Link error injection packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur. The
error specified is the link error that is seen at the targeted end. The OE bit determines which end of the link is the
targeted end, i.e. will see the error.

If the OE bit is set to 1, the error will be seen at the receiver of the simulation model on the other end. The simulation
model on the client side will see a disconnect error via a link state packet. In order for this error to happen during
reception of a SpaceWire packet at the other end, the client can sent a data part packet with no end marker followed
by a link error injection packet.

If the OE bit is set to 0, the error will be seen at the receiver on the client end. The simulation model at the client
end will see the requested error via a link state packet. The simulation model at the other end will see a disconnect
error. Note that due to the nature of the model, this cannot in general be relied upon to inject an error during the
reception of a SpaceWire packet, even if split up in multiple data parts. The link state packet will not be sent by the
server side link model until all previous packets have been handled, and the client should handle all other packets
queued up before that link state packet can be handled. To inject a link error during the reception of a SpaceWire
packet at the client side, the packet error request packet should be used instead.

TSIM2-UM
November 2018, Version 2.0.62

115 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 4

Header at offset 0x4:

31 21 20 19 18 16 15 8 7 5 4 0

R OE R ERROR IPID TYPE R

31:21 R Reserved for future use. Must be set to 0.

20 OE Other end: 1: other end gets the error, 0: my end gets error

19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 5 for link error injection packets

4:0 R Reserved for future use. Must be set to 0.

Figure 10.11. SpaceWire link error injection packet

10.6.5.8. Packet error request packet format

A client can send a packet of this kind to the server side link model to request that a link error will occur during
reception of a certain data packet by the client. The error specified is the link error that is seen, via a link state
packet, by the client as a result. The other side will see a disconnect error. A 64-bit packet number, counting from
0, indicates during which SpaceWire packet sent from the other side to the client the link error should happen. Note
that this number is indexing SpaceWire packets, not individual data part packets, and does not take SpaceWire
packets sent from the client to the server side into account in the numbering. There can only be one outstanding
packet error request per targeted GRSPW2 core at a time.

The grspwX_status command can be issued for the targeted GRSPW2 core to see how many SpaceWire packets
have currently been sent by that core. This includes started but aborted SpaceWire packets, due to link error, core
reset or active aborting using the Abort TX (AT) bit in the DMA control register of the GRSPW2 core.

TSIM2-UM
November 2018, Version 2.0.62

116 www.cobham.com/gaisler

Packet length at offset 0x0:

31 0

LEN

31:0 LEN Length of rest of packet: 16

Header at offset 0x4:

31 19 18 16 15 8 7 5 4 0

R ERROR IPID TYPE R

31:19 R Reserved for future use. Must be set to 0.

18:16 ERROR Link error: 1: Disconnect, 2: Parity, 3: Escape, 4:Credit

15:8 IPID IP core ID: 0 for SpaceWire

7:5 TYPE Packet type: 6 for packet error request packets

4:0 R Reserved for future use. Must be set to 0.

Packet number to request error for, most significant word at offset 0x8:

31 0

MSW

31:0 MSW Bits 63:32 of unsigned 64-bit big endian integer

Packet number to request error for, least significant word at offset 0xc:

31 0

LSW

31:0 LSW Bits 31:0 of unsigned 64-bit big endian integer

Reserved field at offset 0x10:

31 0

R

31:0 R Reserved for future use. Must be set to 0.

Figure 10.12. SpaceWire packet error request packet

10.6.6. Simple Mode

For backwards compatibility with TSIM 2.0.44 and older, the GRSPW2 models can be set up in “simple mode”
with the -grspw_simple 1 option. This makes the following changes to the simulation model for all GRSPW2
cores:

• The only supported packet types are data part packets and time code packets. The model sends out no other
packet types and accepts no other packet types.

• Data part packets should always contain full SpaceWire packets. The -grspw_tx_max_part_len should
not be used together with simple mode and data part packets without end marker should be sent to a GRSPW2
model when using simple mode.

• The link state that a GRSPW2 core percieves is solely determined by its own link control setting. The other
end is assumed to try to start the link. In other words, run state is achieved once the GRSPW2 is set to start or
autostart without having link disable set. Moreover, startup frequencies are ignored and run state is achieved
without any delay.

TSIM2-UM
November 2018, Version 2.0.62

117 www.cobham.com/gaisler

• The RX frequency is determined primarily by the -grspw_simple_rxfreq option. If that is not used, the
RX frequencty is taken by the -grspw_spwfreq option. If none of those options are set the CPU frequency
is used. No cases take any clock divisors info account. The TX frequency is determined in the usual way as
when not in simple mode, which includes taking the clock divisor register into account.

10.7. SPI interface

10.7.1. Connecting a user SPI model with the GR712RC module
See Section 10.2 for details on how to connect the user SPI model to the GR712RC module.

10.7.2. Commands

SPI Commands

spi0_status
Print status for the SPI core.

spi0_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the SPI core.

10.7.3. Debug flags

The following debug flags and debug subcommands are available for SPI interfaces. The GAISLER_SPI_*
flags can be used with the spi0_dbg command to toggle individual flags for individual SPI cores and with the
gr712_dbgon command to toggle individual flags for all SPI cores. The subcommmands can be used with the
spi0_dbg command to change and list the settings of all flags for individual SPI cores.

Table 10.8. SPI debug flags

Flag/subcommand Trace

GAISLER_SPI_ACC SPI register accesses

GAISLER_SPI_IRQ SPI interrupts

all Set all SPI debug flags for the core

clean Set none of the SPI debug flags for the core

list List the current setting of the debug flags for the core

10.7.4. SPI bus model API

The structure struct spi_input models the SPI bus. It is defined as:

/* Spi input provider */

struct spi_input {
 struct input_inp _b;
 int (*spishift)(struct spi_input *ctrl, uint32 select, uint32 bitcnt,
 uint32 out, uint32 *in);
};

The spishift callback should be set by the SPI user module at startup. It is called by the GR712RC module whenever
it shifts a word through the SPI bus.

Table 10.9. spishift callback parameters

Parameter Description

select Slave select bits

bitcnt Number of bits set in the MODE register, if bitcnt is -1 then the operation is not a shift
and the call is to indicate a select change, i.e. if the core is disabled.

out Shift out (tx) data

in Shift in (rx) data

TSIM2-UM
November 2018, Version 2.0.62

118 www.cobham.com/gaisler

The return value of spishift is ignored.

See the gr712/examples/input directory for an example implementation.

10.8. GPIO interface

10.8.1. Connecting a user GPIO model with the GR712RC module
See Section 10.2 for details on how to connect the user GPIO model to the GR712RC module.

10.8.2. Commands

GPIO Commands

gpioX_status
Print status for the GPIO core.

gpioX_dbg [flag|subcommand]
Toggle, set, clear, list debug flags for the GPIO core.

10.8.3. Debug flags

The following debug flags and debug subcommands are available for GPIO interfaces. The GAISLER_GPIO_*
flags can be used with the gpioX_dbg command to toggle individual flags for individual GPIO cores and with the
gr712_dbgon command to toggle individual flags for all GPIO cores. The subcommmands can be used with the
gpioX_dbg command to change and list the settings of all flags for individual GPIO cores.

Table 10.10. GPIO debug flags

Flag/subcommand Trace

GAISLER_GPIO_ACC GPIO register accesses

GAISLER_GPIO_IRQ GPIO interrupts

all Set all GPIO debug flags for the core

clean Set none of the GPIO debug flags for the core

list List the current setting of the debug flags for the core

10.8.4. GPIO model API

The structure struct gpio_input models the GPIO pins. It is defined as:

/* GPIO input provider */
struct gpio_input {
 struct input_inp _b;
 int (*gpioout)(struct gpio_input *ctrl, unsigned int out);
 int (*gpioin) (struct gpio_input *ctrl, unsigned int in);
};

The gpioout callback should be set by the user module at startup. The gpioin callback is set by the GR712RC
AHB module. The gpioout callback is called by the GR712RC module whenever a GPIO output pin changes.
The gpioin callback is called by the user module when the input pins should change. Typically the user module
would register an event handler at a certain time offset and call gpioin from within the event handler.

Table 10.11. gpioout callback parameters

Parameter Description

out The values of the output pins

Table 10.12. gpioin callback parameters

Parameter Description

in The input pin values

TSIM2-UM
November 2018, Version 2.0.62

119 www.cobham.com/gaisler

The return value of gpioin/gpioout is ignored.

See the gr712/examples/input for an example implementation.

10.9. Clock Gating Unit, CANMUX and GRGPREG

The Clock Gate Unit, CANMUX and GRGPREG I/O registers and AMBA Plug & Play area are present in the
GR712RC module. Some of the logic to control which bits are implemented, readable and writable etc. is imple-
mented. However the register bits has no functionality. The current register values can be used by custom I/O
modules in SW validation. For example checking that accessing a specific address are has not been clock gate
disabled or that the SpW clock PLL match with the expect value after initialization.

TSIM2-UM
November 2018, Version 2.0.62

120 www.cobham.com/gaisler

11. Atmel AT697 emulation

To emulate the AT697E chip the -at697e should be used. That sets up parameters for core TSIM2 to match
AT697E. In addition, the AT697 loadable AHB module implements emulation models for the PCI core of the
AT697E. Apart from an overview of what TSIM supports for AT697 emulation, this chapter is mainly about the
AT697 AHB module.

The following table lists which cores in the AT697 are modelled by TSIM or not. Some supported cores are mod-
elled by the core TSIM2 and some in the AT697 AHB module. The table contains some notes of some unsupported
features for otherwise supported cores, but is not necessarily exhaustive in this respect. See Chapter 4 for details
on the builtin simulation models and the rest of the chapter for the AHB module models.

Table 11.1. Simulation models for AT697

Core Status Notes

LEON2FT Supported by core TSIM2 No FT features are modelled.

FPU Supported by core TSIM2

LEON2 system registers Supported by core TSIM2

Interrupt controller Supported by core TSIM2

Memory controller Supported by core TSIM2 No FT features are modelled

UART Supported by core TSIM2

PCI Supported by AHB module

I/O port Not supported Easily modelled in user module

JTAG Not supported Debug link

Debug UART Not supported Debug link

DSU Not supported Debug unit

TSIM supports running several AHB modules. User defined models for unsupported cores can be used in parallel
with the AT697 AHB module. User defined models can also override the simulation models in the AT697 AHB
module.

11.1. Overview of the AT697 AHB module

The PCI emulation is implemented as a AT697 AHB module that will process all accesses to memory region
0xa0000000 - 0xf0000000 (AHB slave mode) and the APB registers starting at 0x80000100. The AT697 AHB
module implements all registers of the PCI core. It will in turn load the PCI user modules that will implement the
devices. The AT697 AHB module is supposed to be the PCI host. Both PCI Initiator and PCI Target mode are
supported. The interface to the PCI user modules is implemented on bus level. Two callbacks model the PCI bus.

See also Section 5.4.1 on some limitations of some features when using this module. The AT697 AHB module
is only supported for TSIM2 LEON2.

The following files are delivered with the AT697 TSIM module:

Table 11.2. Files delivered with the AT697 TSIM module

File Description

at697/linux/at697.so AT697 AHB module for Linux

at697/win32/at697.dll AT697 AHB module for Windows

Input The input directory contains two examples of PCI user modules

at697/examples/input/README.txt Description of the user module examples

at697/examples/input/Makefile Makefile for building the user modules

at697/examples/input/pci.c PCI user module example that makes AT697 PCI initiator accesses

TSIM2-UM
November 2018, Version 2.0.62

121 www.cobham.com/gaisler

File Description

at697/examples/input/pci_target.c PCI user module example that makes AT697 PCI target accesses

at697/examples/input/at697inputprovider.h Interface between the AT697 module and the user defined PCI
module

at697/examples/input/pci_input.h AT697 PCI input provider definitions

at697/examples/input/input.h Generic input provider definitions

at697/examples/input/tsim.h TSIM interface definitions

at697/examples/input/end.h Defines the endian of the local machine

11.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. All core specific options described in the following sections
need to be surrounded by the options -designinput and -designinputend, e.g:

On Linux:

tsim-leon -ahbm ./at697/linux/at697.so
 -designinput ./at697/examples/input/pci.so -designinputend

On Windows:

tsim-leon -ahbm ./at697/win32/at697.dll
 -designinput ./at697/examples/input/pci.dll -designinputend

This loads the AT697 AHB module ./at697.so which in turn loads the PCI user module ./pci.so. The PCI user
module ./pci.so communicates with ./at697.so using the PCI user module interface, while ./at697.so communicates
with TSIM via the AHB interface.

11.3. AT697 initiator mode

The PCI user module should supply the the callback function acc(). The AT697 AHB module will call this
function to emulate AHB slave mode accesses or DMA accesses that are forwarded via acc(). The cmd parameter
determines which command to use. Configuration cycles have to be handled by the PCI user module.

11.4. AT697 target mode

The AT697 AHB module supplies the callback target_acc() to the PCI user modules to implement target
mode accesses from the PCI bus to the AHB bus. The PCI user module should trigger access events itself by
inserting itself into the event queue.

11.5. Definitions

#define ESA_PCI_SPACE_IO 0
#define ESA_PCI_SPACE_MEM 1
#define ESA_PCI_SPACE_CONFIG 2
#define ESA_PCI_SPACE_MEMLINE 3

#define ESA_PCI_ACC_OK 0
#define ESA_PCI_ACC_MASTER_ABORT 1

struct esa_pci_input {
 struct input_inp _b;

 int (*acc)(struct esa_pci_input *ctrl,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *abort,
 unsigned int *ws);

 int (*target_acc)(struct esa_pci_input *ctrl,

TSIM2-UM
November 2018, Version 2.0.62

122 www.cobham.com/gaisler

 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *mexc);
};

11.5.1. PCI command table

0000: "IRQ acknowledge",
0001: "Special cycle",
0010: "I/O Read",
0011: "I/O Write",
0100: "Reserved",
0101: "Reserved",
0110: "Memory Read",
0111: "Memory Write",
1000: "Reserved",
1001: "Reserved",
1010: "Configuration Read",
1011: "Configuration Write",
1100: "Memory Read Multiple",
1101: "Dual Address Cycle",
1110: "Memory Read Line",
1111: "Memory Write And Invalidate"

11.6. Read/write function installed by PCI module

This function should be set by the PCI user module:

 int (*acc)(struct esa_pci_input *ctrl,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *abort,
 unsigned int *ws);

If set, this function is called by the AT697 module whenever PCI bus master reads. Called for AHB-slave mapped
accesses as well as AHB-Master/APB DMA.

Table 11.3. acc callback parameters

Parameter Description

cmd Command to execute, see Section 11.5.1.

addr PCI address

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Is always 2 for read accesses.

data Data buffer. The user module should return the read data in *data for read
commands or write the data in *data for write commands.

ws Set *ws to the number of PCI clocks it takes to complete the transaction.

abort Set *abort to 1 to generate target abort, or 0 otherwise.

The return value of acc determines if the transaction terminates with master abort (1,
ESA_PCI_ACC_MASTER_ABORT), or not (0, ESA_PCI_ACC_OK).

11.7. Read/write function installed by AT697 module

The following function is installed by the AT697 AHB module:

 int (*target_acc)(struct esa_pci_input *ctrl,
 int cmd,
 unsigned int addr,
 unsigned int wsize,
 unsigned int *data,
 unsigned int *mexc);

TSIM2-UM
November 2018, Version 2.0.62

123 www.cobham.com/gaisler

The PCI user module can call this function to emulate a PCI target mode read access to the AT697.

Table 11.4. target_acc parameters

Parameter Description

cmd Command to execute, see Section 11.5.1. Configuration cycles are not sup-
ported, the AT697 module is supposed to be the host.

addr PCI address. Should always be word aligned for read accesses.

wsize 0: 8-bit access 1: 16-bit access, 2: 32-bit access. Should always be 2 for read
accesses.

data Data buffer. The read data is returned in *data for read commands or the
data in *data is written for write commands.

mexc The AT697 PCI models sets *mexc to 0 if access is successful, or to 1 in
case of target abort.

If a supported command hits MEMBAR0, MEMBAR1 or IOBAR, target_acc() will return 1 otherwise it will
return 0.

11.8. Registers

Table 11.5 contains a list of implemented and not implemented fields of the AT697F PCI Registers. Only register
fields that are relevant for the emulated PCI module is implemented.

Table 11.5. PCI register support

Register Implemented Not implemented

PCIID1 device id, vendor id

PCISC stat 13, stat 12, stat 11, stat 7, stat 6 stat 5,
stat 4, com2, com 1, com1

stat15 stat14 stat10_9 stat8 com10 com9 com8
com7 com6 com5 com4 com3

PCIID2 class code, revision id

PCIBHDLC [bist, header type, latency timer, cache
size] config-space only

PCIMBAR1 base address, pref, type, msi

PCIMBAR2 base address, pref, type, msi

PCIIOBAR3 io base address, ms

PCISID subsystem id, svi

PCICP pointer

PCILI [max_lat min_gnt int_pin int_line] con-
fig-space-only

PCIRT [retry trdy] config-space-only

PCICW ben

PCISA start address

PCIIW ben

PCIDMA wdcnt, com b2b

PCIIS act, xff, xfe, rfe dmas, ss

PCIIC mod, commsb dwr, dww, perr

PCITPA tpa1, tpa2

PCITSC errmem, xff, xfe, rfe, tms

PCIITE dmaer,imier, tier cmfer, imper, tbeer, tper, syser

TSIM2-UM
November 2018, Version 2.0.62

124 www.cobham.com/gaisler

Register Implemented Not implemented

PCIITP dmaer,imier, tier cmfer, imper, tbeer, tper, syser

PCIITF dmaer,imier, tier, cmfer, imper, tbeer,
tper, syser

PCID dat

PCIBE dat

PCIDMAA addr

PCIA p0, p1, p2, p3

11.9. Debug flags

The switch -designdbgon flags can be used to enable debug output. The possible values for flags are as follows:

Table 11.6. Debug flags

ESAPCI_REGACC Trace accesses to the PCI registers

ESAPCI_ACC Trace accesses to the PCI AHB-slave address space

ESAPCI_DMA Trace DMA

ESAPCI_IRQ Trace PCI IRQ

11.10. Commands
pci

Displays all PCI registers.

TSIM2-UM
November 2018, Version 2.0.62

125 www.cobham.com/gaisler

12. TPS VxWorks AHB Module

12.1. Overview

The TPS VxWorks Module is a loadable module that simplifies communication between TSIM and the VxWorks
Workbench. It provides a virtual core that acts similar to a basic Ethernet controller, but does not require a packet
server.

The module is only useful in conjunction with VxWorks. See also Section 5.4.1 on some limitations of some
features when using this module.

Table 12.1. Files delivered with the TPS VxWorks TSIM module

File Description

tps/linux/tps-vxworks.so TPS VxWorks module for Linux

tps/win32/tps-vxworks.dll TPS VxWorks module for Windows

12.2. Loading the module

The module is loaded using the TSIM2 option -ahbm. It can be used in conjunction with other modules, such
as the UT699 and GR712RC modules.

On Linux (together with the UT699 design):

tsim-leon3 -ut699 -ahbm ./tps/linux/tps-vxworks.so -ahbm ./ut699/linux/ut699.so

On Windows (together with the GR712RC design):

tsim-leon3 -gr712rc -ahbm ./tps/win32/tps-vxworks.dll -ahbm ./gr712/win32/gr712.dll

12.3. Configuration

By default the module uses IRQ 5 and UDP port 0x4321. This can be changed by using the following command
line arguments:

-tps_vxworks_irq irq
Uses IRQ irq instead of the default.

-tps_vxworks_port port
Uses UDP port port instead of the default.

Use the following command line to make the TPS module use IRQ 10 and port 5000 on Linux together with the
UT699 design:

tsim-leon3 -ut699 -ahbm ./tps/linux/tps-vxworks.so -ahbm ./ut699/linux/ut699.so
 -tps_vxworks_port 5000 -tps_vxworks_irq 10

TSIM2-UM
November 2018, Version 2.0.62

126 www.cobham.com/gaisler

13. Support

For support contact the Cobham Gaisler support team at support@gaisler.com.

When contacting support, please identify yourself in full, including company affiliation and site name and address.
Please identify exactly what product that is used, specifying if it is an IP core (with full name of the library
distribution archive file), component, software version, compiler version, operating system version, debug tool
version, simulator tool version, board version, etc.

The support service is only for paying customers with a support contract.

TSIM2-UM
November 2018, Version 2.0.62

127 www.cobham.com/gaisler

Cobham Gaisler AB
Kungsgatan 12
411 19 Gothenburg
Sweden
www.cobham.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described
herein at any time without notice. Consult Cobham or an authorized sales representative to verify that
the information in this document is current before using this product. Cobham does not assume any
responsibility or liability arising out of the application or use of any product or service described herein,
except as expressly agreed to in writing by Cobham; nor does the purchase, lease, or use of a product
or service from Cobham convey a license under any patent rights, copyrights, trademark rights, or any
other of the intellectual rights of Cobham or of third parties. All information is provided as is. There is no
warranty that it is correct or suitable for any purpose, neither implicit nor explicit.

Copyright © 2018 Cobham Gaisler AB

	
	Table of Contents
	1. Introduction
	1.1. General
	1.2. Supported platforms and system requirements
	1.3. Obtaining TSIM
	1.4. License
	1.5. Evaluation version
	1.6. Problem reports

	2. Installation
	2.1. General
	2.2. License installation
	2.2.1. Floating keys

	3. Operation
	3.1. Overview
	3.2. Starting TSIM
	3.3. Standalone mode commands
	3.3.1. Time specification for commands

	3.4. Symbolic debug information
	3.5. Breakpoints and watchpoints
	3.6. Profiling
	3.7. Code coverage
	3.8. Check-pointing
	3.9. Performance
	3.10. Backtrace
	3.11. Connecting to gdb
	3.12. Thread support
	3.12.1. TSIM thread commands
	3.12.2. GDB thread commands

	3.13. Synchronising TSIM time to external time

	4. Emulation characteristics
	4.1. Common behaviour
	4.1.1. Timing
	4.1.2. UARTs
	4.1.2.1. APBUART model (LEON3/4 only)
	4.1.2.2. UART model (ERC32/LEON2 only)

	4.1.3. Floating point unit (FPU)
	4.1.4. Delayed write to special registers
	4.1.5. Idle-loop optimisation
	4.1.6. Custom instruction emulation
	4.1.7. Chip-specific errata

	4.2. ERC32 specific emulation
	4.2.1. Processor emulation
	4.2.2. MEC emulation
	4.2.3. Interrupt controller
	4.2.4. Watchdog
	4.2.5. Power-down mode
	4.2.6. Memory emulation
	4.2.7. EDAC operation
	4.2.8. Extended RAM and I/O areas
	4.2.9. SYSAV signal
	4.2.10. EXTINTACK signal
	4.2.11. IWDE signal

	4.3. LEON2 specific emulation
	4.3.1. Processor
	4.3.2. Cache memories
	4.3.3. LEON peripherals registers
	4.3.4. Interrupt controller
	4.3.5. Power-down mode
	4.3.6. Memory emulation
	4.3.7. SPARC V8 MUL/DIV/MAC instructions
	4.3.8. FPU emulation
	4.3.9. DSU and hardware breakpoints

	4.4. LEON3 specific emulation
	4.4.1. General
	4.4.2. Processor
	4.4.3. Cache memories
	4.4.4. Power-down mode
	4.4.5. LEON3 peripherals registers
	4.4.6. Interrupt controller
	4.4.7. Memory emulation
	4.4.8. CASA instruction
	4.4.9. SPARC V8 MUL/DIV/MAC instructions
	4.4.10. FPU emulation
	4.4.11. DSU and hardware breakpoints
	4.4.12. AHB status registers
	4.4.13. GRTIMER emulation

	4.5. LEON4 specific emulation
	4.5.1. General
	4.5.2. Processor
	4.5.3. L1 Cache memories
	4.5.4. L2 Cache memory
	4.5.5. Power-down mode
	4.5.6. LEON4 peripherals registers
	4.5.7. Interrupt controller
	4.5.8. Memory emulation
	4.5.9. CASA instruction
	4.5.10. SPARC V8 MUL/DIV/MAC instructions
	4.5.11. FPU emulation
	4.5.12. DSU and hardware breakpoints
	4.5.13. AHB status registers

	5. Loadable modules
	5.1. TSIM I/O emulation interface
	5.1.1. simif structure
	5.1.2. ioif structure
	5.1.3. Structure to be provided by I/O device
	5.1.4. Cygwin specific io_init()

	5.2. LEON AHB emulation interface
	5.2.1. procif structure
	5.2.2. Structure to be provided by AHB module
	5.2.3. Big versus little endianess

	5.3. TSIM/LEON co-processor emulation
	5.3.1. FPU/CP interface
	5.3.2. Structure elements
	5.3.3. Attaching the FPU and CP
	5.3.4. Big versus little endianess
	5.3.5. Additional TSIM commands
	5.3.6. Example FPU

	5.4. Loadable modules distributed with TSIM
	5.4.1. General AHB module limitations

	6. TSIM library (TLIB)
	6.1. Introduction
	6.2. Function interface
	6.3. External I/O and AHB modules
	6.4. Builtin I/O module and/or AHB module
	6.5. UART handling
	6.6. Linking a TLIB application
	6.7. Limitations

	7. Cobham UT699 emulation
	7.1. Overview of the UT699 AHB module
	7.2. Loading the module
	7.2.1. User input module interface

	7.3. Debugging
	7.4. 10/100 Mbps Ethernet Media Access Controller interface
	7.4.1. Start up options
	7.4.2. Commands
	7.4.3. Debug flags
	7.4.4. Ethernet packet server
	7.4.5. Ethernet packet server protocol

	7.5. SpaceWire interface with RMAP support
	7.5.1. Start up options
	7.5.2. Commands
	7.5.3. Debug flags
	7.5.4. SpaceWire packet server
	7.5.5. SpaceWire packet server protocol
	7.5.5.1. Data packet format
	7.5.5.2. Time code packet format

	7.6. PCI initiator/target interface
	7.6.1. Connecting a user PCI model with the UT699 module
	7.6.2. Commands
	7.6.3. Debug flags
	7.6.4. PCI bus model API

	7.7. GPIO interface
	7.7.1. Connecting a user GPIO model with the UT699 module
	7.7.2. Commands
	7.7.3. Debug flags
	7.7.4. GPIO model API

	7.8. CAN interface
	7.8.1. Start up options
	7.8.2. Commands
	7.8.3. Debug flags
	7.8.4. Packet server
	7.8.5. CAN packet server protocol
	7.8.5.1. CAN message packet format
	7.8.5.2. Error counter packet format
	7.8.5.3. Acknowledge packet format
	7.8.5.4. Acknowledge packet format

	8. Cobham UT699E emulation
	8.1. Overview of the UT699E AHB module
	8.2. Loading the module
	8.2.1. User input module interface

	8.3. Debugging
	8.4. 10/100 Mbps Ethernet Media Access Controller interface
	8.4.1. Start up options
	8.4.2. Commands
	8.4.3. Debug flags
	8.4.4. Ethernet packet server
	8.4.5. Ethernet packet server protocol

	8.5. SpaceWire interface with RMAP support
	8.5.1. Start up options
	8.5.2. Commands
	8.5.3. Debug flags
	8.5.4. SpaceWire packet server
	8.5.5. SpaceWire packet server protocol
	8.5.5.1. Flow control limitations
	8.5.5.2. Data part packet format
	8.5.5.3. Time code packet format
	8.5.5.4. Link state packet format
	8.5.5.5. Link control packet format
	8.5.5.6. RX frequency packet format
	8.5.5.7. Link error injection packet format
	8.5.5.8. Packet error request packet format

	8.5.6. Simple Mode

	8.6. PCI initiator/target interface
	8.6.1. Connecting a user PCI model with the UT699E module
	8.6.2. Commands
	8.6.3. Debug flags
	8.6.4. PCI bus model API

	8.7. GPIO interface
	8.7.1. Connecting a user GPIO model with the UT699E module
	8.7.2. Commands
	8.7.3. Debug flags
	8.7.4. GPIO model API

	8.8. CAN interface
	8.8.1. Start up options
	8.8.2. Commands
	8.8.3. Debug flags
	8.8.4. Packet server
	8.8.5. CAN packet server protocol
	8.8.5.1. CAN message packet format
	8.8.5.2. Error counter packet format
	8.8.5.3. Acknowledge packet format
	8.8.5.4. Acknowledge packet format

	9. Cobham UT700 emulation
	9.1. Overview of the UT700 AHB module
	9.2. Loading the module
	9.2.1. User input module interface

	9.3. Debugging
	9.4. 10/100 Mbps Ethernet Media Access Controller interface
	9.4.1. Start up options
	9.4.2. Commands
	9.4.3. Debug flags
	9.4.4. Ethernet packet server
	9.4.5. Ethernet packet server protocol

	9.5. SpaceWire interface with RMAP support
	9.5.1. Start up options
	9.5.2. Commands
	9.5.3. Debug flags
	9.5.4. SpaceWire packet server
	9.5.5. SpaceWire packet server protocol
	9.5.5.1. Flow control limitations
	9.5.5.2. Data part packet format
	9.5.5.3. Time code packet format
	9.5.5.4. Link state packet format
	9.5.5.5. Link control packet format
	9.5.5.6. RX frequency packet format
	9.5.5.7. Link error injection packet format
	9.5.5.8. Packet error request packet format

	9.5.6. Simple Mode

	9.6. PCI initiator/target interface
	9.6.1. Connecting a user PCI model with the UT700 module
	9.6.2. Commands
	9.6.3. Debug flags
	9.6.4. PCI bus model API

	9.7. GPIO interface
	9.7.1. Connecting a user GPIO model with the UT700 module
	9.7.2. Commands
	9.7.3. Debug flags
	9.7.4. GPIO model API

	9.8. CAN interface
	9.8.1. Start up options
	9.8.2. Commands
	9.8.3. Debug flags
	9.8.4. Packet server
	9.8.5. CAN packet server protocol
	9.8.5.1. CAN message packet format
	9.8.5.2. Error counter packet format
	9.8.5.3. Acknowledge packet format
	9.8.5.4. Acknowledge packet format

	9.9. SPI interface
	9.9.1. Connecting a user SPI model with the UT700 module
	9.9.2. Commands
	9.9.3. Debug flags
	9.9.4. SPI bus model API

	10. Cobham Gaisler GR712RC emulation
	10.1. Overview of the GR712RC AHB module
	10.2. Loading the module
	10.2.1. User input module interface

	10.3. Debugging
	10.4. CAN interface
	10.4.1. Start up options
	10.4.2. Commands
	10.4.3. Debug flags
	10.4.4. Packet server
	10.4.5. CAN packet server protocol
	10.4.5.1. CAN message packet format
	10.4.5.2. Error counter packet format
	10.4.5.3. Acknowledge packet format
	10.4.5.4. Acknowledge packet format

	10.5. 10/100 Mbps Ethernet Media Access Controller interface
	10.5.1. Start up options
	10.5.2. Commands
	10.5.3. Debug flags
	10.5.4. Ethernet packet server
	10.5.5. Ethernet packet server protocol

	10.6. SpaceWire interface with RMAP support
	10.6.1. Start up options
	10.6.2. Commands
	10.6.3. Debug flags
	10.6.4. SpaceWire packet server
	10.6.5. SpaceWire packet server protocol
	10.6.5.1. Flow control limitations
	10.6.5.2. Data part packet format
	10.6.5.3. Time code packet format
	10.6.5.4. Link state packet format
	10.6.5.5. Link control packet format
	10.6.5.6. RX frequency packet format
	10.6.5.7. Link error injection packet format
	10.6.5.8. Packet error request packet format

	10.6.6. Simple Mode

	10.7. SPI interface
	10.7.1. Connecting a user SPI model with the GR712RC module
	10.7.2. Commands
	10.7.3. Debug flags
	10.7.4. SPI bus model API

	10.8. GPIO interface
	10.8.1. Connecting a user GPIO model with the GR712RC module
	10.8.2. Commands
	10.8.3. Debug flags
	10.8.4. GPIO model API

	10.9. Clock Gating Unit, CANMUX and GRGPREG

	11. Atmel AT697 emulation
	11.1. Overview of the AT697 AHB module
	11.2. Loading the module
	11.3. AT697 initiator mode
	11.4. AT697 target mode
	11.5. Definitions
	11.5.1. PCI command table

	11.6. Read/write function installed by PCI module
	11.7. Read/write function installed by AT697 module
	11.8. Registers
	11.9. Debug flags
	11.10. Commands

	12. TPS VxWorks AHB Module
	12.1. Overview
	12.2. Loading the module
	12.3. Configuration

	13. Support

