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1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SoC) 
development. The IP cores are centered around a common on-chip bus, and use a coherent method for 
simulation and synthesis. The library is vendor independent, with support for different CAD tools and 
target technologies. A unique plug&play method is used to configure and connect the IP cores with-
out the need to modify any global resources.

The LEON3 and LEON4 processors are synthesisable VHDL models of 32-bit processor compliant 
with the SPARC V8 architecture. The models are highly configurable and particularly suitable for 
SoC designs. Both LEON3 and LEON4 are distributed as integrated parts of the GRLIB IP Library. 

This configuration and development guide is intended to aid designers when developing systems 
based on LEON/GRLIB. The guide complements the GRLIB IP Library User’s Manual and the 
GRLIB IP Core User’s Manual. While the IP Library user’s manual is suited for RTL designs and the 
IP Core user’s manual is suited for instantiation and usage of specific cores, this guide aims to help 
designers make decisions in the specification stage.

1.2 Other Resources

There are several documents that together describe the GRLIB IP Library and Cobham Gaisler’s IP 
cores:

• GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the library 
infrastructure, organization, tool support and on-chip bus.

• GRLIB IP Core User’s Manual (grip.pdf) - Describes specific IP cores provided with the GRLIB 
IP library. Also specifies which cores that are included in each type of GRLIB distribution.

• GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB 
IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

• GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the 
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library 
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as 
part of the add-on package for FT-FPGA.

1.3 Licensing

Some of the cores mentioned in this document (such as LEON4 and the AHB bridges) are only avail-
able in the commercial versions of GRLIB.
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2 System Design Guidelines

2.1 Introduction

The design and partitioning of a system strongly depends on the intended use for the system. The sec-
tions below make general recommendations based on the components available in GRLIB.

2.2 Minimal System

A minimal LEON/GRLIB system consists of the following IP cores:

TABLE 1. Minimal LEON system

Core Description

CLKGEN Clock generator

RSTGEN Reset generator. Generating a glitch free on-chip system reset signal.

AHBCTRL AHB arbiter/controller. 

APBCTRL AHB/APB bridge/controller. Must be included in order to interface 
peripheral cores such as interrupt controller and timer unit.

LEON3/4 LEON3/4 processor

IRQMP Interrupt controller

GPTIMER General Purpose Timer Unit

MEMCTRL Memory controller providing access to (P)ROM and RAM. The 
GRLIB IP Library contains several memory controllers. It is also possi-
ble to include on-chip ROM and RAM by using the AHBROM and 
AHBRAM IP cores.

In addition to the cores described above it is recommended to include a LEON Debug Support Unit 
(DSU) and a debug communication link to be able to control the processor and inspect the system via 
the GRMON Debug Monitor. GRLIB contains several debug communication link (DCL) cores. All 
DCL cores are controlled over an external link to make accesses on an on-chip AHB bus. Examples of 
DCL cores are the AHBJTAG, AHBUART and USBDCL cores. See section 5 for more information.

In order for the processor to be able to communicate with the outside world, an 8-bit UART and a 
General Purpose I/O port is also typically included in a LEON design.

With the above considerations the recommended minimal LEON/GRLIB system also includes the 
following cores:

TABLE 2. Additional recommended cores for minimal LEON system

Core Description

DSU3/4 LEON Debug Support Unit

AHBJTAG/
AHBUART/
USBDCL/
GRETH

Debug communication link. AHBJTAG provides an external JTAG 
link. Other examples include AHBUART (serial UART), USBDCL 
(USB), GRETH (Ethernet debug communication link is available as 
part of Ethernet MAC core).

APBUART 8-bit UART

GRGPIO General Purpose I/O Port

2.3 Memory Map

2.3.1  Overview

Most LEON systems use a memory map where ROM (boot PROM) is mapped at address 
0x00000000 and RAM is mapped at address 0x40000000. Traditionally the AHB/APB bridge has 
been mapped at 0x80000000 and peripherals such as timer, interrupt controller and UART have been 
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placed at fixed offsets in the APB address space. Table 3 shows the base addresses historically used in 
LEON systems.

TABLE 3. Peripheral base addresses, legacy systems

Base address Description

0x80000000 LEON2 memory controller

0x80000100 Generic UART (APBUART)

0x80000200 Multi-processor interrupt controller (IRQMP)

0x80000300 Modular timer unit (GPTIMER)

Some software may not read all peripheral core base addresses from plug&play and instead assume 
that some peripherals are mapped at these fixed offsets. One of the affected software packages is the 
BCC toolchain, where the -qambapp switch must be given in order for the produced software to find 
the UART, timer and interrupt controller in case these peripherals are not mapped at the addresses 
given in table 3.

The traditional memory map described above does not fit all systems. In particular one or several 
large memory area (>= 1 GiB) may be difficult to place as the standard AHB decoder in GRLIB con-
strains the base address of a memory area based on the memory area size. Other reasons include that 
the use of AHB-to-AHB bridges that limit how the memory areas can be arranged. As a result of this, 
there are several LEON/GRLIB designs with different memory maps. In order to ease software devel-
opment, this document contains some recommendations on how memory maps should be arranged. 
Section 2.3.2 shows a traditional LEON/GRLIB memory map and section 2.3.3 contains recommen-
dations on how to arrange memory maps that contains large memory areas.

2.3.2  Typical LEON/GRLIB Memory Map

In order to use toolchains and other software distributed by Cobham Gaisler, some constraints in the 
system’s memory map should be observed. A typical LEON3 system has the following memory map:

TABLE 4. Typical LEON3 memory map

Base address Description

0x00000000 PROM

0x40000000 RAM base address. Some systems place SRAM at address 0x40000000 
and SDRAM at base address 0x60000000. When SRAM is disabled the 
memory controller may automatically adjust the SDRAM base address 
to 0x40000000.

0x80000000 Base address of first AHB/APB bridge connecting interrupt controller, 
UART(s) and timer unit.

0x90000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The most important areas in the table above are base addresses for ROM and RAM. The default linker 
scripts make assumptions on the locations of these areas. Also, software that makes use of the GRLIB 
AMBA plug’n’play areas often assume the main plug’n’play area to be located at 0xFFFFF000. The 
information in this area is used by software to dynamically find the addresses of all peripherals in the 
system.

The location of the first AHB/APB bridge (0x80000000 in the table above) is generally of less impor-
tance. Some legacy software may assume that the bridge is located at the specified address.

The typical memory map given above constrains the maximum size of a memory area in the design. 
The GRLIB infrastructure requires that memory areas are binary aligned according to their size. This 
means that a 2 GiB memory area must start on address 0x00000000 or address 0x80000000. In order 
GUIDE, Jan 2016, Version 1.5.0 6 www.cobham.com/gaisler
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to accommodate memory areas of 2 GiB some systems use variations of the memory map as shown in 
table 5.

2.3.3  Memory Map in Systems That Need 2 GiB Memory Area

TABLE 5. Memory map accomodating 2 GiB main memory area

Base address Description

0x00000000 RAM

0x80000000 Other large area, for instance PCI bridge mapping PCI memory

0xC0000000 PROM / Memory mapped IO

0xD0000000 AHB/APB bridge

0xE0000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The memory map in table 5 allows a 2 GiB memory map in the address range 0x00000000 - 
0x7FFFFFFF and is supported by the toolchains supplied by Cobham Gaisler by giving an extra 
switch (see the toolchain and OS documentation for details). Note that the default start address for a 
LEON processor is 0x0. If the memory map above is used, the reset start address should be changed 
to 0xC0000000.

Existing LEON systems use variations of the above memory map. The main difficulties that can arise 
from different memory maps is that the RAM and ROM areas may collide in linker scripts and boot 
loaders. It is therefore recommended that RAM is always mapped at 0x40000000 or 0x00000000 and 
that ROM (boot PROM area) is mapped at 0x00000000 or 0xC0000000.

Special switches may be required when building the application if RAM is mapped at 0x00000000. 
See toolchain documentation for details.

2.3.4  AHB I/O Area and GRLIB Plug&Play Areas

It is recommended that the default addresses are used for AHB I/O areas (determined by generic on 
AHBCTRL) and GRLIB AMBA plug&play areas (determined via generics on AHBCTRL and 
APBCTRL). Software scanning routines will assume that one plug&play area is located at 
0xFFFFF000.

It is possible to place the AHB I/O area and the AHB plug&play area so that it shadows another AHB 
area. As an example a PCI core can be mapped at address 0xC0000000 - 0xFFFFFFFF while the 
plug&play area is still reachable at offset 0xFFFFF000. While such memory maps are perfectly valid 
and useful for many systems it generally not recommended to let the AHB I/O or plug&play area 
shadow another area as software drivers may not recognize that some of the memory area assigned to 
a core is essentially unreachable. When an AHB I/O area or the plug&play area shadows another 
AHB slave it means that the AHB slave will not be selected when an access is made to the address 
range occupied by AHB I/O or plug&play.

2.4 Interrupt Assignments

2.4.1  Overview

The LEON processor and interrupt controller provides 15 interrupt lines in the default configuration. 
Interrupt 15 is non-maskable, which leaves 14 interrupts usable for peripheral cores. The multiproces-
sor interrupt controllers (IRQMP and IRQ(A)MP cores) can be extended to provide 16 additional 
interrupts, called extended interrupts.

The GRLIB interrupt infrastructure allows any number of cores to share the same interrupt line. Note, 
however, that sharing interrupts requires that the software drivers can handle shared interrupts. Also, 
the time required to serve an interrupt request may be significantly prolonged if software needs to 
check a large number of registers in order to determine if a peripheral asserted an interrupt.
GUIDE, Jan 2016, Version 1.5.0 7 www.cobham.com/gaisler
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Some operating systems place additional constraints on interrupt assignments. The subsections below 
describe the requirements of each OS. The basic rules to follow in order to be able to run the maxi-
mum amount of software can be summarized with: 

1. If possible, have one dedicated interrupt for each interrupt source (no shared interrupts).
2. Configure the timer unit (GPTIMER) to have dedicated interrupts for each timer
3. Place the timer interrupts within the range 2 - 12
4. Leave interrupts lines 13 - 15 unused

The subsections below dealing with operating systems may become outdated due to changes in the 
operating systems. If in doubt, please consult the OS documentation or contact Cobham Gaisler for 
the latest information.

2.4.2  Linux 2.6

Interrupt 15 is used for cross-calls. Interrupt 13 is the default selection for inter-processor-interrupts 
(IPI). The interrupt line to be used for IPI can be selected when building the kernel and cannot be 
shared with peripherals.

Linux also requires that the first timer on the general purpose timer unit (GPTIMER) has a dedicated 
interrupt. For SMP operation the second timer must also have a dedicated interrupt line allocated.

2.4.3  RTEMS

RTEMS supports extended interrupts. Interrupt 14 is used for cross-CPU messaging in AMP systems. 
This interrupt is defined in leon.h: LEON3_MP_IRQ, cannot be a shared interrupt and must be in the 
range 1 .. 14.

RTEMS SMP is at the time of writing not finished and requirements are not known.

Timer 0 of GPTIMER 0 is the system clock timer, however RTEMS can be used without a timer. 
There are two cases depending on which RTEMS distribution that is used:

Classical/official RTEMS BSP: GPTIMER0.timer0 must have separate IRQ and the interrupt must be 
in the range 1 .. 14.

“Driver manager BSP” (RCC LEON3/4 BSP): Can handle both separate and shared IRQs on GPTI-
MER, interrupt can be in the range 1 .. 31 (no limitations).

2.4.4  VxWorks

VxWorks makes use of interrupt 14 for inter-processor-interrupts (IPI). This interrupt should not be 
shared with peripherals.

2.5 Device Specific Identification

GRLIB systems have two identifiers in the system’s plug&play area that can be used to distinguish a 
particular device: The GRLIB build ID and the GRLIB System Device ID. The GRLIB build ID is set 
globally for the full library and the device ID is set per design via the AHBCTRL VHDL generic 
devid (refer to the AHBCTRL section in GRLIB IP Core User’s Manual, grip.pdf). This VHDL 
generic should be set to a unique value for all new designs. The file lib/grlib/amba/devices.vhd lists 
device IDs, under the comment grlib system device id’s, used for some existing designs. It is recom-
mended that customer designs use an ID larger than 16#0a00#. Please contact Cobham Gaisler sup-
port if you wish to have you device ID added to the listing in devices.vhd.

Communication interfaces may have additional vendor and device identifiers. This is, for instance, 
the case for JTAG, PCI and USB. For the USB debug link it is recommended that users keep the 
Cobham Gaisler IDs so that GRMON may properly detected the debug link. For all other identifiers 
the implementers of a device should use their own IDs as assigned by the appropriate organisations. 
Re-use of Cobham Gaisler’s vendor/manufacturer ID may prevent the device from fully functioning 
together with software and debug tools.
GUIDE, Jan 2016, Version 1.5.0 8 www.cobham.com/gaisler
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3 LEON design information

3.1 Introduction

The sections below contain recommendations on how to configure the LEON processors depending 
on system requirements.

3.2 General Recommendations

3.2.1  SPARC V9 CASA

The LEON4 processor and later revisions of the LEON3 processor contain support for the SPARC V9 
CASA instruction. It is recommended that all new LEON3 implementations include support for 
CASA (this is a strict requirement if the system will run WindRiver VxWorks in SMP).

3.2.2  Data Cache Snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled. When 
enabled, the data cache monitors write accesses on the AHB bus to cacheable locations. If another 
AHB master writes to a cacheable location that is currently cached in the date cache, the correspond-
ing cache line is marked as invalid.

Data cache snooping is of high importance for SMP systems and, in general, both simplifies and 
increases performance in systems with multiple masters. Note that the processor(s) snoop on the bus 
to which they are directly connected. In a system with multiple AHB buses, snooping will only work 
on the bus to which the processors are connected. Snooping will not provide cache coherency if, for 
instance, there are masters connected between a Level-2 cache and memory, while the processors are 
located in front of the Level-2 cache.

If the processor(s) is implemented with a memory management unit (MMU), then extra physical tags 
must be enabled.

3.2.3  V7 and FPU

When the LEON is implemented with an FPU it should also include hardware support for multiply 
and divide (SPARC V8 MUL/DIV selected with the LEON VHDL generic v8). Otherwise a SPARC 
V7 processor with FPU will be obtained and this configuration may not be supported by prebuilt 
packages and toolchains.

3.3 LEON Example Configurations

3.3.1  Overview

The subsections below show three different example configurations for LEON processors; a minimal 
configuration used to target low area and high frequency, a typical configuration with all features 
enabled, and a high-performance configuration where the requirements on processing performance 
outweigh area and power considerations.

Each section contains a table with recommended values for some of the LEON processor VHDL 
generics. If you are using the xconfig GUI to configure the processor then please note that the VHDL 
generic names do not directly correspond to the configuration options in the GUI. The descriptions of 
the configuration settings should provide enough information to do appropriate configuration selec-
tion also via xconfig. The xconfig tool also has support to initialize the processor configuration with 
values from the three example configurations described in the sections below. See the configuration 
help text in xconfig for the option Force values from example configuration in the Processor sub 
menu for additional information.

Also note that all listed configuration options do not apply to all LEON processors. For instance, the 
LEON3 processor has a VHDL generic called bp that controls the inclusion of branch predication, 
while the LEON4 processor is always implemented with support for branch prediction.

3.3.2  Minimal LEON Configuration

This LEON configuration is aimed at resource constrained systems where the area requirements of the 
processor core needs to be minimized. Note that using an area minimized configuration may not nec-
GUIDE, Jan 2016, Version 1.5.0 9 www.cobham.com/gaisler



LEON/GRLIB Guide
essarily reduce the system’s performance since it may be possible to achieve a higher operating fre-
quency by reducing the amount of logic in the processor core.

Table 6 below shows recommended values for some of the LEON processor VHDL generics to attain 
a minimal configuration in terms of area.

TABLE 6. Minimal LEON processor configuration

VHDL 
generic

Recommended 
value Description

dsu 0 Some area can be saved by removing the Debug Support Unit 
(DSU). However, this unit can prove to be invaluable at least 
during the software development phase.

fpu 0 Disable floating-point unit

v8 0 Do not include support for SPARC V8 MUL/DIV instructions

mac 0 Do not include support for SPARC V8e SMAC/UMAC

nwp 0 Disable hardware watchpoints

icen / dcen 1 Include processor caches

isets / dsets 1 Direct mapped instruction and data cache

irepl / drepl 2 Random replacement policy for both instruction and data cache 
(setting is unused for direct-mapped cache)

isetsize / 
dsetsize

- The size of the caches does not significantly affect the required 
logic. Choose cache size according to application requirements and 
amount of RAM available on target device.

dnsoop 0 Disable data cache snooping (see section 3.2.2)

mmuen 0 Disable memory management unit (MMU). Note: May be required 
depending on software applications.

lddel 1 1-cycle load delay

tbuf 0 Disable instruction trace buffer (NOTE: Including the instruction 
trace buffer may be of high value during software development 
and debug).

pwd 1 Power-down implementation. Choose 2 if frequency target is not 
met.

smp 0 Disable SMP support. If the processor core should be used in an 
SMP configuration then see the GRIP documentation on how to set 
the SMP generic. If SMP is enabled then the dsnoop VHDL 
generic should also be set accordingly.

bp 0 Disable branch prediction
GUIDE, Jan 2016, Version 1.5.0 10 www.cobham.com/gaisler
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3.3.3  General Purpose LEON Configuration

This LEON configuration is aimed for general purpose processing balancing performance against 
area and power requirements.

TABLE 7. General purpose LEON processor configuration

VHDL 
generic

Recommended 
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu - Include floating-point unit based on application requirements. A 
floating-point unit is highly recommended for most systems. 
LEON processors can primarily interface the GRFPU or GRFPU-
lite floating point unit. The GRFPU is a high-performance pipe-
lined FPU with high area requirements. GRFPU-lite provides a 
balanced option with high acceleration of floating-point computa-
tions combined with lower area requirements compared to 
GRFPU.

v8 2 Include support for SPARC V8 MUL/DIV instructions using a 5-
cycle multiplier. Note that if the target technology has multiplier 
blocks a single-cycle multiplier (v8 generic set to 1) may provide 
lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions.

nwp 2 Include two hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 2 Random replacement policy for both instruction and data cache, or 
possibly LRU replacement (irepl/drepl set to 0).

isetsize / 
dsetsize

- The size of the caches does not significantly affect the required 
logic. Choose cache size according to application requirements and 
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum / 
dtlbnum

8 Use eight entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write 
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp 0 Disable SMP support. If the processor core should be used in an 
SMP configuration then see the GRIP documentation on how to set 
the SMP generic.

bp 1 Enable branch prediction

3.3.4  High Performance LEON Configuration

This LEON configuration is aimed at high performance processing where the needs for computational 
speed outweighs area and power requirements.
GUIDE, Jan 2016, Version 1.5.0 11 www.cobham.com/gaisler
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In order to reduce the effects of memory latency, a Level-2 cache is recommended for high-perfor-
mance systems. This is of particular interest in multiprocessor systems.

TABLE 8. High-performance LEON processor configuration

VHDL 
generic

Recommended 
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu 1 - 7 Use GRFPU floating-point unit. Select (FP) multiplier depending 
on target technology. For FPGA this would typically be inferred 
(1) or technology specific (4). For ASIC DesignWare multiplier (2) 
or Module Generator (3).

v8 16#32# Include support for SPARC V8 MUL/DIV instructions using a 
32x32 pipelined multiplier. Note that if the target technology has 
multiplier blocks a single-cycle multiplier (v8 generic set to 1) 
may provide lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions

nwp 4 Include support for four hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 0 Least-Recently-Used replacement policy for instruction and data 
caches.

isetsize / 
dsetsize

- The size of the caches does not significantly affect the required 
logic. Choose cache size according to application requirements and 
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum / 
dtlbnum

16 Use sixteen entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write 
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp > 0 Enable SMP support. If the processor core should be used in an 
SMP configuration then see the GRIP documentation on how to set 
the SMP generic. Note that several processor entities must be 
instantiated. This configuration option only enables support for 
SMP, it does not instantiate several processor cores.

bp 1 Enable branch prediction
GUIDE, Jan 2016, Version 1.5.0 12 www.cobham.com/gaisler
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3.3.5  Configuration Settings For Existing LEON Devices

The table below shows configurations for existing Cobham/Aeroflex LEON devices. Please refer to 
the previous subsections under section 3.3 for comments and descriptions of the different values.

TABLE 9. LEON processor configurations

VHDL 
generic

UT699 
Value

UT700 
Value

GR712RC 
value

GR740 
Value

LEON3-
RTAX 
example 
value

dsu 1 1 1 1 1

fpu 2 2 2 2 0

v8 2 16#32#+4 2 16#32# 0

mac 0 0 0 0 0

nwp 4 4 2 4 2

icen 1 1 1 1 1

isets 2 4 4 4 1

isetsize 4 4 4 4 8

irepl 0 0 0 0 0

ilinesize 8 8 8 8 8

dcen 1 1 1 1 1

dsets 2 4 4 4 1

dsetsize 4 4 4 4 4

drepl 0 0 0 0 0

dlinesize 4 4 4 8 4

dnsoop 6 6 6 6 0

mmuen 1 1 1 1 0

itlbnum / 
dtlbnum

16 / 16 16 / 16 16 / 16 16 / 16 - / -

tlb_type 0 2 2 2 0

tlb_rep 0 0 0 0 0

lddel 2 1 1 1 1

tbuf 2 4 4 8 2

pwd 2 2 2 2 2

svt 1 1 1 1 1

smp 0 0 1 1 0

bp N/A (0) 1 1 N/A 0

npasi N/A (0) N/A (0) N/A (0) 1 N/A (0)

pwrpsr N/A (0) N/A (0) N/A (0) 1 N/A (0)

LEON ver-
sion used

LEON3FT
v1

LEON3FT
v2

LEON3FT
v1 with BP

LEON4v0 LEON3FTv1 
to LEON3v3

3.4 LEON subsystem (gaisler.subsys.leon_dsu_stat_base)

GRLIB contains a subsystem component that can be used to instantiate the LEON processor, debug 
support unit and a statistics unit (performance counters). The subsystem is available in lib/gaisler/
subsys/ and also has a corresponding xconfig script.
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leon_dsu_stat_base allows to select between LEON3 and LEON4. If LEON4 is selected then the 
GRLIB AMBA bus width needs to be set to 64 or 128 bits. This is accomplished by changing the 
GRLIB_CONFIG package.

Examples on how to use the subsystem can be seen in the following template designs:

•designs/leon3-gr-cpci-xc4v

•designs/leon3-gr-cpci-xc7k

•designs/leon3-gr-pci-xc5v

•designs/leon3-xilinx-kc705

•designs/leon3-xilinx-ml50x

•designs/leon3-xilinx-ml510

•designs/leon3-xilinx-vc707

Note that the Makefile in these designs also contains special conditions that depend on the selection 
between LEON3 and LEON4.
GUIDE, Jan 2016, Version 1.5.0 14 www.cobham.com/gaisler



LEON/GRLIB Guide
4 Multiple Buses, Clock Domains and Clock Gating

4.1 Introduction

This section describes some techniques that can be used with GRLIB to create more complex system 
architectures with multiple buses and/or clock domains. 

Peripheral IP cores that need to work at a separate clock domain usually have their own clocking and 
synchronization built in. This is not explained here, see the core-specific documentation.

4.2 Creating Multi-Bus Systems

4.2.1  Overview

The on-chip bus may become a bottle neck in systems where the processors and peripherals all share 
the same bus. The fact that all IP cores are connected together may also introduce high loads in the 
system, which can lead to timing issues at implementation. These issues can be solved by partitioning 
the system into several AHB buses.

4.2.2  GRLIB Facilities

In order to partition the system into multiple buses, the general-purpose AHB bridge IP cores AHB-
BRIDGE (uni-directional) and AHB2AHB (bi-directional) are included in GRLIB. There are also 
special-purpose cores, such as the IOMMU and L2-cache, that have bridge functionality built into 
them.

4.2.3  GRLIB AMBA Plug&Play in Multi-Bus Systems

Software and debug monitors such as GRMON can detect all IP cores connected to the on-chip 
bus(es) by scanning the plug&play configuration area. The format and function of this area is 
described in the GRLIB User’s Manual and in the GRLIB IP Core User’s Manual documentation for 
the AHB controller (AHBCTRL) and AHB/APB bridge (APBCTRL).

In multi-bus systems, each bus will have its own AMBA plug&play configuration area and software 
must be able to access all plug&play areas In order for software able to discover all peripherals in a 
system. The same applies for the GRMON debug monitor, to discover all peripherals the debug com-
munication link master interface must be connected to a bus from where it can access all plug&play 
areas (as well as memory where peripheral registers are mapped).

The plug&play scanning routines discover the presence of multiple AHB buses when it discovers the 
slave interface a core such as the Level-2 cache or AHB/AHB bridge (AHB2AHB, AHBBRIDGE). 
Upon discovery of a bridge the routine will typically look in the user defined register of the bridge’s 
plug&play information to get the base address of the AHB I/O and plug&play area of the second bus. 
Excatly how the base address of the plug&play information is communicated to the scanning routine 
is specific for each core. The Level-2 cache and AHB/AHB bridges store this address in user defined 
register 1 of the core’s AHB slave interface plug&play information. A value of zero in this register 
signals to software that plug&play scanning should not be done for the second bus behind the bridge.

When software discovers a bridge to a new bus, scanning should commence using the new plug&play 
area address (depth-first scanning) and once the new plug&play area has been handled scanning 
should continue on the current bus.

Note that for plug&play scanning to work, all plug&play areas must be accessible from the AHB 
master that performs the scan. This means that any bridge between AHB buses must have a window 
that allows the plug&play area on the other side of the bridge to be accessed. System software and 
debug tools by default start scanning for a plug&play area at the top of AMBA memory space. it is 
important that the plug&play area located in this address has pointers so that all other plug&play 
areas in the system can be discovered. For instance, the default plug&play area address should not be 
occupied by the plug&play area of a bus that is only connected to the rest of the system via the AHB 
master interface side of a Level-2 cache or uni-directional bridge. This is because the extra informa-
tion at the AHB master interface does not contain the base address for the plug&play area of the bus 
on the AHB slave interface side of the bridge. As a result of this, plug&play scanning routines will 
only find one bus in the system.
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4.2.4  Buses in Different Clock Domains

In order to work around timing issues, or to reduce power consumption, it can make sense to partition 
the design also into several clock domains. The AHB/AHB bridges (AHB2AHB, AHBBRIDGE and 
GRIOMMU) allows connecting buses with differing operating frequencies together. 

The bus clocks on each side of the bridge need to have a frequency ratio relationship and fixed phase 
relation. This avoids the need to resynchronize signals on chip which would cause a performance pen-
alty. 

If you want to run everything except the processor at half speed, a more efficient solution than using 
bridges is to use the LEON double clocking support explained in section 4.3.

4.2.5  Single AHB Bus Example

A typical LEON/GRLIB design is shown in the figure below. The design is centered around one 
AMBA AHB bus and also has a AMBA APB bus that connects some of the peripheral cores via an 
AHB/APB bridge.

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

16-bit I/O

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

WDOG

Ethernet
MAC

PHY

PS/2 VGA

VideoPS/2 IF
DAC

CAN 2.0
Link

CAN

SDRAMPROM I/O

USB PHY

port

Building the system around one AHB bus has advantages in that it simplifies system design.

4.2.6  Multi-Bus System Example

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

LEON3
Serial

Dbg Link
AHB

Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

JTAG
Dbg Link

RS232 JTAG

Spacewire
Link
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Ethernet
MAC

PHY

PS/2 SVGA

CAN 2.0
Link

CAN

AHB2AHB
Bridge

Memory
Controller

AHB
Controller

(SVGA) AMBA AHB
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One example (shown above) of when a multi-bus system resolves bus contention is when a SVGA 
controller (SVGACTRL core) is used. The SVGA controller continuously reads a frame buffer 
located in external memory. This constant data fetching can consume a significant amount of the 
available bus bandwidth, particularly in systems with relatively low system frequencies. The impact 
of the SVGA controller bus traffic can be removed by placing the SVGA controller and a dedicated 
memory controller on a separate bus. The processor can still access the frame buffer through and uni-
directional bridge.

4.3 LEON3 Double-Clocking

4.3.1  Overview

To avoid critical timing paths in large AHB systems, it is possible to clock the LEON3 processor core 
at an inter multiple of the AHB clock. This will allow the processor to reach higher performance 
while executing out of the caches. The performance will be higher while executing out of the caches 
since the processor core will be running at a higher frequency. On a cache miss the processor will 
need to make a bus access and timing of this bus access will be made according to the lower bus fre-
quency. This chapter will describe how to implement a LEON3 double-clocked system using the 
LEON3-CLK2X template design as an example.

The LEON3 CPU core be clocked at a multiple of the clock speed of the AMBA AHB bus. When 
clocked at double AHB clock frequency, all CPU core parts including integer unit and caches will 
operate at double AHB clock frequency while the AHB bus access is performed at the slower AHB 
clock frequency. The two clocks have to be synchronous and multicycle paths between the two clock 
domains have to be defined at synthesis tool level. Separate components (leon3s2x, leon3x, 
leon3ft2x) are provided for the double clocked core. Double clocked versions of DSU (dsu3_2x) and 
MP interrupt controller (irqmp2x) are used in a double clocked LEON3 system. An AHB clock quali-
fier signal (clken input) is used to identify end of AHB cycle. The AHB qualifier signal is generated in 
CPU clock domain and is high during the last CPU clock cycle under AHB clock low-phase.

4.3.2  LEON3-CLK2X Template Design

The LEON3-CLK2X design is a multi frequency design based on double-clocked LEON3 CPU core. 
The LEON3 CPU core and DSU run at multiple AHB frequency internally, while the AHB bus and 
other AHB components are clocked by the slower AHB clock. Double clocked version of the inter-
rupt controller is used, synchronizing interrupt level signals between the CPU and the interrupt con-
troller. 

The design can be configured to support different ratios between CPU and AHB clock such as 2x, 3x 
or 4x. If dynamic clock switching is enabled, an glitch-free clock multiplexer selecting between the 
fast CPU clock and the slower AHB clock is used to dynamically change frequency of the CPU core 
(by writing to an APB register).

4.3.3  Clocking

The design uses two synchronous clocks, AHB clock and CPU clock. For Xilinx and Altera technolo-
gies the clocks are provided by the clkgen module, for ASIC technologies a custom clock generation 
circuit providing two synchronous clocks with low skew has to be provided.

An AHB clock qualifier signal, identifying end of an AHB clock cycle is necessary for correct opera-
tion of the double-clocked cores. The AHB clock qualifier signal (HCLKEN), indicating end of an 
AHB clock cycle, is provided by the qmod module. The signal is generated in CPU clock domain and 
is active during the last CPU clock cycle during low-phase of the AHB clock. Figure 1 shows timing 
for CPU and AHB clock signals (CPUCLK, HCLK) and AHB clock qualifier signal (HCLKEN) for 
clock ratios 2x and 3x.
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Figure 1. Timing diagram for CPUCLK, HCLK and HCLKEN 
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4.3.4  Multicycle Paths

Paths going through both CPU and AHB clock domains have propagation time of one AHB clock 
cycle, and should be marked as multicycle paths with following exceptions: 

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

CPUCLK ahbso CPUCLK N CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK

dsu3_2x core

CPUCLK ahbmi  CPUCLK N CPUCLK

CPUCLK ahbsi  CPUCLK N CPUCLK

dsui  CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register)  r[*] (register) 1 CPUCLK

* N is ratio between CPU and AHB clock frequency (2, 3, ...)

Sample DC script defining multicycle paths and exceptions is provided in the design directory 
(dblclk.dc).

Figure 2 shows synchronization of AHB signals starting in HCLK clock domain and ending in CPU-
CLK domain (inside the double clocked cores LEON3S2X and DSU3_2X). These AHB signals are 
captured by registers in CPUCLK domain at the end of AHB clock cycle, allowing propagation time 
of 2 or more CPUCLK cycles (one HCLK cycle). The end of the AHB clock cycle is indicated by the 
AHB clock qualifier signal HCLKEN. One of the inputs of the AND gate in figure below is connected 
to the clock qualifier signal HCLKEN ensuring that the value of the signal AHBI is latched into R2 at 
the end of AHB cycle (HCLKEN = ‘1’). The value of signal AHBI is not valid in the CPUCLK clock 
domain if the qualifier signal HCLKEN is low. In this case, the AND gate will be closed and the value 
of the signal AHBI will not propagate to register R2.
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Figure 2. Synchronization between HCLK and CPUCLK clock domains

 CPUCLK

HCLK
HCLKEN

D Q D Q

HCLK 

D Q

AHBI

 CPUCLK

CPUCLK
Clock Domain Clock Domain

R1 R2

LEON3S2X

Synchronization of AHB signals going from the double clocked cores to the AHB clock domain is 
shown if figure 3. The AND gate is open when CPU (or DSU) performs an AHB access (AHBEN = 
‘1’). When the AND gate is open, the signal AHBO will be stable during the whole AHB cycle and its 
value propagates to the HCLK clock domain (AHB bus). When CPU does not perform AHB access 
(CLKEN = ‘1’) the AND gate is closed (AHBEN = ‘0’) disabling propagation of signal AHBO to the 
HCLK clock domain.

Figure 3. Synchronization between CPUCLK and HCLK clock domains
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The AND gates in figures 2 and 3 are 2-input clock AND gates. Synthesis tool should not optimize 
these AND gates. Sample DC-script puts ‘don’t-touch’ attribute on these cells to prevent optimiza-
tion.

The multicycle constraints for the GRLIB double clocked cores are typically defined by start clock 
domain, intermediate points and end clock domain. Although FPGA synthesis tools provide support 
for multicycle paths, they do not provide or have limited support for this type of multicycle con-
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straints (start clock domain, intermediate points, end clock domain). This limitation results in over-
constrained FPGA designs (multicycle paths become single cycle) which are fully functional and suit-
able for FPGA prototyping.

4.3.5  Dynamic Clock Switching

An optional clock multiplexer switching between the CPU and AHB clocks and providing clock for 
double-clocked cores can be enabled. The clock multiplexer is used to dynamically change frequency 
of the CPU core, e.g. CPU can run at lower AHB frequency during periods with low CPU load and at 
twice the AHB frequency during periods with high CPU load. 

The clock switching is controlled by writing to the qmod modules APB register (default address 
0x80000400), bit 0: writing ‘1’ will switch to the CPU clock and writing ‘0’ will switch to the AHB 
clock. 

The clock multiplexer is glitch-free, during clock switching the deselected clock is turned-off (gated) 
before the selected clock is enabled and selected. 

Dynamic clock switching is available for Xilinx and generic technologies.

4.3.6  Configuration

xconfig

Clock ratios 2x, 3x and 4x between CPU and AHB clock are supported. Clock ratio 2x is supported 
for all technologies, ratios 3x and 4x are supported for ASIC technologies. Dynamic clock switching 
is available for Xilinx and ASIC technologies.

leon3s2x

Double-clocked LEON3 core is configured similarly to standard LEON3 core (leon3s) through 
VHDL generics. An additional VHDL generic clk2x is set to ((clock ratio - 1) + (8 * dyn)) where dyn
is 1 if dynamic clock switching is enabled and 0 if disabled.

qmod

Local qmod module generates AHB clock qualifier signal and optionally controls dynamic clock 
switching. The module is configured through VHDL - generics defining clock ratio (clkfact), dynamic 
clock switching (dynfreq) and address mapping of modules APB register (pindex, paddr, pmask).

irqmp_2x

VHDL generic clkfact should be set to clock ratio between CPU and AHB clocks.

4.4 Clock gating

4.4.1  Overview

GRLIB contains support for using clock gating for both the processors and peripheral IP cores. The 
GRCLKGATE unit described in the GRLIB IP Core User’s Manual can be used both to gate peripher-
als and to provide automatic processor (and floating-point unit) clock gating.

4.4.2  LEON clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with 
the processor, the clock cannot be gated immediately when the processor has entered the power-down 
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses 
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the 
clock-low phase. To ensure proper start-up state, the clock should not be gated during reset and at 
least 3 clocks after that reset has been de-asserted.
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Figure 4.  Examples of LEON clock gating
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The processor should exit the power-down state when an interrupt become pending. The signal 
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3 or DSU4) is used, the DSUO.pwd signal should be used instead 
of DBGO.idle. This will ensure that the clock also is re-enabled when the processor is switched from 
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per 
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will 
ensure that the snooping logic is activated when necessary and will keep the data cache synchronized 
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0 
will enter power-down after reset and will allow immediate clock-gating without additional software 
support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are 
phase-aligned. The template design leon3-clock-gate shows an example of a clock-gated system. 
Please refer to the LEON signal descriptions in the GRLIB IP Core User’s Manual document for doc-
umentation on which processor clock inputs that are allowed to be gated-off. Please also see the docu-
mentation for the GRCLKGATE and GRCLKGATE2 IP cores in the same document.
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5 Debug communication links

5.1 Overview

GRLIB contains several debug communication link (DCL) controller cores. All DCL cores are con-
trolled over an external link to make accesses on an on-chip AHB bus. These communcation links can 
be used by an external debug monitor to perform debugging operations on the system or by other 
external devices that need direct memory access to the design.

5.2 Available debug link controllers

A debug communication link controller is an IP core that has that supports communication over an 
external interface without on-chip software involvement. The IP core decodes incoming traffic and 
translates the traffic to operations on the AMBA bus. The table below lists IP cores that can act as 
debug communication link controllers.

TABLE 10. Debug Communication Link controllers

Interface IP core
AMBA access 
size supported Notes

Serial UART AHBUART Word Supported by GRMON

JTAG AHBJTAG Byte, Half-word, 
Word

Supported by GRMON

Ethernet GRETH /

GRETH_GBIT

Word DCL functionality is optional to include in 
Ethernet controllers. Supported by 
GRMON.

PCI GRPCI / GRPCI2 Byte, Half-word, 
Word

GRMON can make use of PCI target to 
access system.

SpaceWire 
RMAP

GRSPW 

GRSPW2 / 

GRSPWROUTER

Read: Byte, 
Half-word, Word

Write: Word

RMAP hardware handler is optional to 
include in SpaceWire controllers. GRMON 
can connect via GRESB Ethernet-to-Space-
Wire bridge. The controllers translate sub-
word read accesses to 32-bit read 
operations.

USB GRUSB_DCL Word Supported by GRMON

I2C I2C2AHB Byte, Half-word, 
Word

Not supported by GRMON

SPI SPI2AHB Byte, Half-word, 
Word

Not supported by GRMON
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6 Core specific design recommendations

6.1 Overview

The subsections below contain system design recommendations when using specific GRLIB cores.

6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)

The AHB/AHB bridges can be of high value when partitioning the system into several clock domains 
or when there is a need to separate bus traffic. The use of a bridge will result in increased latencies 
when accesses need to traverse over the bridge.

For bi-directional bridge configurations the designer needs to be aware that collisions (attempts to tra-
verse the bridge both ways simultaneously) will mean that the access on the slave bridge will be 
aborted and then re-attempted. This situation can potentially lead to starvation and deadlocks.

When instantiating the bridge with a prefetch buffer the buffer should be scaled so that it does not 
prefetch unnecessarily large amounts of data. If the master(s) traversing the bridge have a maximum 
burst length of eight words, then the bridge’s prefetch buffer should not be larger than eight words.

6.3 SVGA Controller (SVGACTRL)

The SVGA controller can consume a significant amount of the available bus bandwidth. Even if cal-
culations show that there is plenty of bandwidth available, the inclusion of SVGACTRL may add bus 
access latencies that significantly impact computational performance. For design that include a 
SVGA controller it is recommended to place the SVGA controller on a separate bus with a dedicated 
frame buffer memory.
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7 GRLIB AMBA Test Framework

7.1 Overview

GRLIB has a number of packages that can aid in verification of AMBA cores. New developments 
should use the GRLIB AMBA Test Framework (ATF). The test framework consists of an AHB mas-
ter core, an AHB slave core and an AHB arbiter/controller core. The AHB master and slave cores 
have debug interfaces that allow them to be controlled using external stimuli.

The sections below give an overview of the components in the framework. The test framework is not 
distributed as a product and there is no complete user’s manual. The test master and slave is con-
trolled by procedure calls that are documented in their respective VHDL packages (described below).

ATF files are located in the directory <grlib root>/lib/grlib/atf/. All GRLIB distributions do not 
include ATF. If the atf directory is missing from your GRLIB tree, then your version of GRLIB does 
not contain the components described in this section.

NOTE: The GRLIB AMBA test framework is NOT included in the free GRLIB-GPL.

7.2 AT AHB Master

7.2.1  Description

The AT AHB Master (AT_AHB_MST) is a non-synthesizable AHB master core with a debug inter-
face so that the master can be controlled via function calls. 

7.2.2  Initialization and Instantiation

The component for the master is defined in the package grlib.at_pkg and the procedure calls to con-
trol the master is available in the package grlib.at_ahb_mst_pkg. In order to instantiate the master, the 
following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_mst_pkg.all;
use grlib.testlib.all;

The component for AT_AHB_MST has the following interface:
component at_ahb_mst is
    generic(
      hindex:        in    Integer := 0;
      vendorid:      in    Integer := 0;
      deviceid:      in    Integer := 0;
      version:       in    Integer := 0;
      grlibdatamux:  in    integer := 1);
    port(
      -- AMBA AHB system signals
      hclk:          in    std_ulogic;
      hresetn:       in    std_ulogic;
      --AHB Interface
      ahbi:          in    ahb_mst_in_type;
      ahbo:          out   ahb_mst_out_type;
      --Operation Scheduling Interface
      atmi:          in  at_ahb_mst_in_type;
      atmo:          out at_ahb_mst_out_type
     );
   end component;

The only VHDL generics that require proper assignment are hindex and grlibdatamux. The hindex
generic must match the bus index in the same way as for other GRLIB AHB masters. The grlibdata-
mux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux => 0) 
or the simplified data multiplexing scheme (grlibdatamux => 1) commonly used in GRLIB (see the 
GRLIB IP Library User’s Manual, grlib.pdf, for details). For use in a normal GRLIB system the 
default value is recommended. An example instantiation of AT_AHB_MST can be found in verifica-
tion/at/at_tb.vhd. At the top of the file the libraries mentioned above are included. The test bench 
instantiates several AMBA masters, the signals used to control the debug interfaces are created as:
signal atmi  : at_ahb_mst_in_vector(0 to 2);
signal atmo  : at_ahb_mst_out_vector(0 to 2);
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The masters are then instantiated using a generate loop:
-- Masters
mstrs01 : for i in 0 to 2 generate
    amst : at_ahb_mst
     generic map(
       hindex         => FIRST_MASTER_INDEX+i,
       vendorid       => 0,
       deviceid       => 0,
       version        => 0)
     port map(
       -- AMBA AHB system signals
       hclk           => clk,
       hresetn        => rstn,
       
       -- Direct Memory Access Interface
       atmi           => atmi(i),
       atmo           => atmo(i),
       
       -- AMBA AHB Master Interface
       ahbi           => ahbmi,
       ahbo           => ahbmo(FIRST_MASTER_INDEX+i));
end generate;

The masters are controlled by calls from the test bench process. Before use, each master debug inter-
face must be initialized. In verification/at/at_tb.vhd this is done by calls to at_init(..):
testbench: process

----- variable definitions removed -----

  begin  -- process testbench
    ---------------------------------------------------------------------------
    -- Testbench initialization
    ---------------------------------------------------------------------------
    Print("----------------------------------------------");
    Print("AMBA Test Framework test bench");
    Print("----------------------------------------------");
    for i in atmi'range loop
      at_init(i, atmi);
    end loop;
    wait until rstn = '1'

7.2.3  Simple Accesses

After initalization has been performed, as described in the previous section, the procedures defined in 
grlib.at_ahb_mst_pkg (lib/grlib/atf/at_ahb_mst_pkg.vhd) can be used to command the master to per-
form accesses. The procedures are either read or write procedures. A read or write procedure can be 
either blocking (call will not return before the access is completed) or non-blocking (call will return 
immediately and another call must be made at a later time in order to complete the command on the 
debug interface). All non-blocking procedures have names ending with _nb, the procedures used to 
complete a non-blocking call have names that end with _nb_fin.

Procedures that make single accesses are named in the following format: at_read_<size>(..) or 
at_write_<size>(..). Where <size> can be 8, 16, 32, 64, 128 or 256. The non-blocking pairs are 
named at_read_<size>_nb(..) / at_read_<size>_nb_fin(..) and at_write_nb(..) / at_write_nb_fin(..). 
There are also procedures that make burst accesses. These have the word burst in their name, for 
instance at_write_burst_32(..). The procedure names are overloaded and there can be several variants 
of a procedure, with a different number of parameters.

The simplest way to perform a single access, in this case a write, is to use a call like:
at_write_32(
address => X”h40000000”,
data => X”01234567”,
atmi => atmi(0),
atmo => atmo(0));

The non-blocking variant is (here we assume that we have defined the variable id as an integer and the 
variable ready as a boolean):
at_write_32_nb(
    address => X”h40000000”,
    data => X”01234567”,
    waitcycles => 0,
    lock => false,
    hprot => “0011”,
    back2back => false,
    screenoutput => false,
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    id => id,
    atmi => atmi(0),
    atmo => atmo(0));  

-- Here other tasks can be performed

at_write_32_nb_fin(
     id => id,
     wait_for_op => true,
     screenoutput => false,
     ready => ready,
    atmi => atmi(0),
    atmo => atmo(0));

The first call initiates a write access to address 0x40000000 with data 0x01234567. The access should 
start immediately, not assert HLOCK and use the specified HPROT (0b0011). The first call will 
assign an access identifier to the variable id. This identifier is used by AT_AHB_MST to keep track of 
the access. The same access identifier must then be used in the call to at_write_32_nb_fin(..). The 
core will try to perform the write access even if the call to at_write_32_nb_fin(..) never takes place. 
However, if at_write_32_nb_fin(..) is never called, the core will keep a record of the completed 
access in its internal data structures forever.

A call to at_<operation>_<size>_nb_fin(..) procedure will block if the wait_for_op parameter is set 
to true. If wait_for_op is set to false, the call will return immediately and the ready variable must be 
checked to see if AT_AHB_MST completed the access.

The description given for write operations above also applies to read operations. Note that for non-
blocking reads (at_read_<size>_nb(..) / at_read_<size>_nb_fin(..)), the data will be returned when 
at_read_<size>_nb_fin(..) is called. The first call only tells the master to initiate an access, the 
at_read_<size>_nb_fin(..) call will tell you when, and if, the access has completed and the master 
will have data available.

As mentioned above, the core can also generate burst accesses. In the case of non-blocking burst 
accesses, the id and ready parameters will be arrays instead of single values.

The description above covers basic operation of AT_AHB_MST. Please refer to the grlib.at_ahb_m-
st_pkg package located at lib/grlib/atf/at_ahb_mst_pkg.vhd to see all available procedure calls. Each 
call and its parameters are documented in the package.

7.3 AT AHB Slave

7.3.1  Description

The AT AHB Slave (AT_AHB_SLV) is an non-synthesizable AHB slave core with a debug interface 
that allows insertion of custom AHB replies and access to the core’s internal memory structures. 

7.3.2  Initialization and Instantiation

The component for the slave is defined in the package grlib.at_pkg and the procedure calls used to 
access the slave via its debug interface are available in the package grlib.at_ahb_slv_pkg. In order to 
instantiate the slave, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_slv_pkg.all;

The component for AT_AHB_SLV has the following interface:
component at_ahb_slv is
   generic (
     hindex        : integer := 0;       -- Slave index    
     bank0addr     : integer := 0;
     bank0mask     : integer := 0;
     bank0type     : integer := 0;       -- 0: memory area 1: I/O area
     bank0cache    : integer := 0;       -- Cachable
     bank0prefetch : integer := 0;       -- Prefetchable
     bank0ws       : integer := 0;       -- Waitstates
     bank0rws      : integer := 0;       -- Random wait states 'ws' is the maxmimum
     bank0dataload : integer := 0;       -- Load data from file
     bank0datafile : string  := "none";  -- Initial data for bank
     bank1addr     : integer := 0;
     bank1mask     : integer := 0;
     bank1type     : integer := 0;       -- 0: memory area 1: I/O area
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     bank1cache    : integer := 0;       -- Cachable
     bank1prefetch : integer := 0;       -- Prefetchable
     bank1ws       : integer := 0;       -- Waitstates
     bank1rws      : integer := 0;       -- Random wait states 'ws' is the maxmimum
     bank1dataload : integer := 0;       -- Load data from file
     bank1datafile : string  := "none";  -- Initial data for bank
     bank2addr     : integer := 0;
     bank2mask     : integer := 0;
     bank2type     : integer := 0;       -- 0: memory area 1: I/O area
     bank2cache    : integer := 0;       -- Cachable
     bank2prefetch : integer := 0;       -- Prefetchable
     bank2ws       : integer := 0;       -- Waitstates
     bank2rws      : integer := 0;       -- Random wait states 'ws' is the maxmimum
     bank2dataload : integer := 0;       -- Load data from file
     bank2datafile : string  := "none";  -- Initial data for bank
     bank3addr     : integer := 0;
     bank3mask     : integer := 0;
     bank3type     : integer := 0;       -- 0: memory area 1: I/O area
     bank3cache    : integer := 0;       -- Cachable
     bank3prefetch : integer := 0;       -- Prefetchable
     bank3ws       : integer := 0;       -- Waitstates
     bank3rws      : integer := 0;       -- Random wait states 'ws' is the maxmimum
     bank3dataload : integer := 0;       -- Load data from file
     bank3datafile : string  := "none";  -- Initial data for bank
     grlibdatamux  : integer := 1        -- GRLIB AMBA data MUX:ing
    );
   port (
     rstn  : in  std_ulogic;
     clk   : in  std_ulogic;
     ahbsi : in  ahb_slv_in_type;
     ahbso : out ahb_slv_out_type;
     dbgi  : in  at_slv_dbg_in_type;
     dbgo  : out at_slv_dbg_out_type
   );
  end component;

The hindex generic must match the bus index in the same way as for other GRLIB cores. The grlib-
datamux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux => 
0) or the simplified data multiplexing scheme (grlibdatamux => 1) used in GRLIB (see the GRLIB IP 
Library User’s Manual, grlib.pdf, for details).

For use in a normal GRLIB system, the default value is recommended. The other generics define the 
size and behavior of the, up to, four available AHB memory areas (banks). Each bank is configured 
via a set of generics described in the table below:

TABLE 11. AT_AHB_SLV VHDL generics

VHDL generic Description

bank*addr Bank base address. Set in the same manner as for all GRLIB AHB slaves

bank*mask Bank mask. Decides how many of the bank*addr bits that are matched against the 
incoming AMBA HADDR and thereby also determines the size of the memory area.

bank*type Selects if the bank is an AHB memory area or an AHB I/O area. The AT_AHB_SLV 
package defines to constants that can be used to select the type: AT_AHBSLV_MEM 
and AT_AHBSLV_IO.

bank*cache Determines if bank is cacheable. This value is only used when banktype is set to 
AT_AHBSLV_MEM.

bank*prefetch Determines if the bank is prefetchable. This value is only used when banktype is set 
to AT_AHBSLV_MEM.

bank*ws Number of wait states that the core will insert on each access to the bank.

bank*rws Enables random wait states. If this generic is set to AT_AHBSLV_RANDOM_WS, 
the core will insert between 0 and bank*ws wait states on each access. If this generic 
is set to AT_AHBSLV_FIXED_WS the core will always insert bank*ws wait states.

bank*dataload If this generics is non-zero, the core will load initial memory data from the SREC file 
specified by bank*datafile.

bank*datafile See above.
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An example instantiation of AT_AHB_SLV can be found in verification/at/at_tb.vhd. At the top of 
the file the libraries mentioned above is included. The signals used to make accesses to AT_AH-
B_SLV’s debug interface are created with:
signal dbgi  : at_slv_dbg_in_type;
signal dbgo  : at_slv_dbg_out_type;

An example instantiation of AT_AHB_SLV looks like:
ahbslv0 : at_ahb_slv
    generic map (
      hindex        => 0,
      -- Bank 0 configuration;
      bank0addr => 16#000#,
      bank0mask => 16#FFF#,
      bank0type => AT_AHBSLV_MEM,
      bank0cache => 1,
      bank0prefetch => 1,
      bank0ws => 1,
      bank0rws => AT_AHBSLV_FIXED_WS,
      bank0dataload => 0,
      bank0datafile => "none")
    port map (
      rstn => rstn, clk => clk, 
      ahbsi => ahbsi, ahbso => ahbso(0),
      dbgi => dbgi, dbgo => dbgo);

After the rstn signal has gone high the core will be ready to handle incoming AMBA accesses. If no 
file is used to initialize the memory, all memory position will contain ‘U’.

7.3.3  Controlling AT_AHB_SLV

When the slave has left system reset (rstn input is high), the procedures defined in grlib.at_ah-
b_slv_pkg (lib/grlib/atf/at_ahb_slv_pkg.vhd) can be used to control the slave’s behavior and to access 
the slave’s internal memory. 

Accesses to the slave’s internal memory are made via the ahbslv_read(..) and ahbslv_write(..) proce-
dures. These procedures have the following interface:
  -- Subprogram: ahbslv_write
  -- Description: Write data to slave memory. The input address is masked and
  --              only the valid bits are used. This means that the full AMBA
  --              address can be used and the caller does not have to subtract
  --              the bank start address.
  procedure ahbslv_write (
    constant address : in  std_logic_vector(ADDR_R);
    constant data    : in  std_logic_vector;
    constant bank    : in  integer;
    signal   dbgi    : out at_slv_dbg_in_type;
    signal   dbgo    : in  at_slv_dbg_out_type);

  -- Subprogram: ahbslv_read
  -- Description: Read data from slave memory. The input address is masked and
  --              only the valid bits are used. This means that the full AMBA
  --              address can be used and the caller does not have to subtract
  --              the bank start address.
  procedure ahbslv_read (
    constant address : in  std_logic_vector(ADDR_R);
    variable data    : out std_logic_vector;
    constant bank    : in  integer;
    signal   dbgi    : out at_slv_dbg_in_type;
    signal   dbgo    : in  at_slv_dbg_out_type);

These functions are useful quickly initializing memory or to check the result of AMBA accesses 
made to the slave without generating traffic on the AMBA AHB bus. The width of the vector assigned 
to the data parameter determines the size of the access. The width of the address vector input must be 
32 bits (31 downto 0).

A common use of AT_AHB_SLV is to specify special responses in order to test the behavior of AHB 
masters in the system. Custom responses can be inserted with the ahbslv_response(..) procedure. This 
procedure name is overloaded and variants with a different number of parameters exist. The most ver-
satile ahbslv_response(..) procedure is:
  procedure ahbslv_response (
    constant address_start  : in  std_logic_vector(ADDR_R);
    constant address_stop   : in  std_logic_vector(ADDR_R);
    constant bank           : in  integer;
    constant response       : in  std_logic_vector(1 downto 0);
    constant data           : in  std_logic_vector;
    constant master         : in  integer range 0 to NAHBMST-1;
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    constant anymst         : in  boolean;
    variable id             : out integer;
    signal   dbgi           : out at_slv_dbg_in_type;
    signal   dbgo           : in  at_slv_dbg_out_type;
    constant ws             : in  integer := 0;
    constant repeat         : in  integer := 1;
    constant count          : in  integer := 1;
    constant splitcnt       : in  integer := 5;
    constant mem_access     : in  boolean := false;
    constant read_response  : in  boolean := true;
    constant write_response : in  boolean := true;
    constant lock           : in  boolean := false;
    constant delay          : in  integer := 0;
    constant hprot          : in  std_logic_vector(3 downto 0);
    constant anyhprot       : in  boolean);

The parameters are documented in the grlib.at_ahb_slv_pkg package. Note that several parameters 
have default values, this means that they do not have to be assigned when using the procedure. A 
selection of available AT_AHB_SLV procedures are listed in table 12. All procedures are further doc-
umented in the grlib.at_ahb_slv_pkg package located at lib/grlib/atf/at_ahb_slv_pkg.vhd.

TABLE 12. Selection of AT_AHB_SLV procedures

Procedure name Description

ahbslv_response Inserts a customized response into the slaves response queue. If two 
responses are inserted for the same address (range), the first response to be 
inserted will be the first given. Several overloaded versions exist giving the 
ability to, for instance, only replying to accesses from a specific master that 
have a specific HPROT value. When a response is inserted, an unique iden-
tifier for that response is returned.

ahbslv_response_status Used to determine if a response with a specified identifier is in the slave’s 
response queue.

ahbslv_response_remove Removes a response with a specified identifier from the slave’s response 
queue.

ahbslv_response_clear Removes all queue responses in the slave or only for a specified bank.

ahbslv_response_unlock A response inserted with ahbslv_response(..) can be “locked” which means 
that it will be valid for an unlimited number of accesses. This procedure can 
be used to “unlock” the response, removing it from the slave.

ahbslv_waitforaccess This procedure will block until an access has been made to a specified 
memory address.

ahbslv_waitforcomplete This procedure will block until a queued response has been triggered and 
removed from the slave’s response queue.

ahbslv_setconfig Changes the default behavior of AHB slave model. Can be used to config-
ure wait states, random wait states, random RETRY and SPLIT responses, 
etc.

ahbslv_getconfig Reads the current default behavior of the slave.

ahbslv_enable_split Enables SPLIT responses with a specified probability.

ahbslv_disable_split Disables SPLIT responses.

ahbslv_enable_retry Enables RETRY responses with a specified probability.

ahbslv_disable_retry Disables RETRY responses.

ahbslv_set_ws Sets the default number of wait states to be inserted by the slave.

ahbslv_get_ws Gets the default number of wait states inserted by the slave.
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7.4 AT AHB Controller

7.4.1  Description

The AT AHB Controller (AT_AHB_CTRL) is an non-synthesizable AHB arbiter/controller. Com-
pared to the standard GRLIB AHBCTRL core, AT_AHB_CTRL supports early burst termination and 
forced re-arbitration

7.4.2  Usage

In order to instantiate the controller, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
The component for AT_AHB_CTRL has the following interface:
   component at_ahb_ctrl is
     generic (
       defmast     : integer := 0; -- default master
       split       : integer := 0; -- split support
       rrobin      : integer := 0; -- round-robin arbitration
       timeout     : integer range 0 to 255 := 0;  -- HREADY timeout
       ioaddr      : ahb_addr_type := 16#fff#;  -- I/O area MSB address
       iomask      : ahb_addr_type := 16#fff#;  -- I/O area address mask
       cfgaddr     : ahb_addr_type := 16#ff0#;  -- config area MSB address
       cfgmask     : ahb_addr_type := 16#ff0#;  -- config area address mask
       nahbm       : integer range 1 to NAHBMST := NAHBMST; -- number of masters
       nahbs       : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
       ioen        : integer range 0 to 15 := 1;    -- enable I/O area
       disirq      : integer range 0 to 1 := 0;     -- disable interrupt routing
       fixbrst     : integer range 0 to 1 := 0;     -- support fix-length bursts
       debug       : integer range 0 to 2 := 2;     -- report cores to console
       fpnpen      : integer range 0 to 1 := 0; -- full PnP configuration decoding
       icheck      : integer range 0 to 1 := 1;
       devid       : integer := 0;      -- unique device ID
       enbusmon    : integer range 0 to 1 := 0; --enable bus monitor
       assertwarn  : integer range 0 to 1 := 0; --enable assertions for warnings 
       asserterr   : integer range 0 to 1 := 0; --enable assertions for errors
       hmstdisable : integer := 0; --disable master checks           
       hslvdisable : integer := 0; --disable slave checks
       arbdisable  : integer := 0; --disable arbiter checks
       mprio       : integer := 0; --master with highest priority
       mcheck      : integer := 1; --check memory map for intersects
       enebterm    : integer := 0; --enable early burst termination
       ebprob      : integer := 10; --probability setting for of early bursttermination
       ccheck      : integer range 0 to 1 := 1;  --perform sanity checks on pnp config
       acdm        : integer := 0  --AMBA compliant data muxing (for hsize > word) 
       );
     port (
       rst     : in  std_ulogic;
       clk     : in  std_ulogic;
       msti    : out ahb_mst_in_type;
       msto    : in  ahb_mst_out_vector;
       slvi    : out ahb_slv_in_type;
       slvo    : in  ahb_slv_out_vector;
       testen  : in  std_ulogic := '0';
       testrst : in  std_ulogic := '1';
       scanen  : in  std_ulogic := '0';
       testoen : in  std_ulogic := '1';
       doarb   : in  std_ulogic := '0'
     );
   end component;

Most of the core’s VHDL generics are the same as for the AHBCTRL core. Two generics have been 
added: enebterm and ebprob. When enebterm is set to a non-zero value the core may automatically 
terminate burst accesses early. The normal GRLIB arbiter, AHBCTRL, does not interrupt a burst by 
removing grant from a master. With enebterm /= 0 and ebprob set to 10 the probability of a burst 
being interrupted by AT_AHB_CTRL is about 0.10 in each cycle.

Bursts may also be terminated early by assertion of the doarb input signal. When doarb is asserted, 
the AHB arbiter will perform arbitration.

Use of AT_AHB_CTRL is primarily recommended when a core will be used in non-GRLIB systems. 
The GRLIB arbiter will never interrupt a burst access and it is not a strict requirement that a core can 
handle terminated bursts for the core to function in GRLIB.
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8 Support

Cobham Gaisler AB provides support via support@gaisler.com for customers with support contracts. 
Limited free support is also provided by Cobham Gaisler engineers on the leon_sparc Yahoo! group 
found at http://tech.groups.yahoo.com/group/leon_sparc/. This group also has a searchable archive.

http://tech.groups.yahoo.com/group/leon_sparc/
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