
LEON/GRLIB Guide
GRLIB VHDL IP Core Library

2016 Configuration and Development Guide

The most important thing we build is trust

GUIDE, Jan 2016, Version 1.5.0 www.cobham.com/gaisler

Configuration and Development Guide

Jan 2016, Version 1.5.0

LEON/GRLIB Guide
Table of contents

1 Introduction... 4
1.1 Overview ... 4

1.2 Other Resources .. 4

1.3 Licensing ... 4

2 System Design Guidelines .. 5
2.1 Introduction ... 5

2.2 Minimal System .. 5

2.3 Memory Map... 5
2.3.1 Overview... 5
2.3.2 Typical LEON/GRLIB Memory Map... 6
2.3.3 Memory Map in Systems That Need 2 GiB Memory Area 7
2.3.4 AHB I/O Area and GRLIB Plug&Play Areas... 7

2.4 Interrupt Assignments.. 7
2.4.1 Overview... 7
2.4.2 Linux 2.6 ... 8
2.4.3 RTEMS ... 8
2.4.4 VxWorks ... 8

2.5 Device Specific Identification ... 8

3 LEON design information... 9
3.1 Introduction ... 9

3.2 General Recommendations.. 9
3.2.1 SPARC V9 CASA... 9
3.2.2 Data Cache Snooping.. 9
3.2.3 V7 and FPU... 9

3.3 LEON Example Configurations .. 9
3.3.1 Overview... 9
3.3.2 Minimal LEON Configuration.. 9
3.3.3 General Purpose LEON Configuration ... 11
3.3.4 High Performance LEON Configuration .. 11
3.3.5 Configuration Settings For Existing LEON Devices.. 13

3.4 LEON subsystem (gaisler.subsys.leon_dsu_stat_base)... 13

4 Multiple Buses, Clock Domains and Clock Gating .. 15
4.1 Introduction ... 15

4.2 Creating Multi-Bus Systems ... 15
4.2.1 Overview... 15
4.2.2 GRLIB Facilities ... 15
4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems.. 15
4.2.4 Buses in Different Clock Domains ... 16
4.2.5 Single AHB Bus Example... 16
4.2.6 Multi-Bus System Example .. 16

4.3 LEON3 Double-Clocking.. 17
4.3.1 Overview... 17
4.3.2 LEON3-CLK2X Template Design.. 17
4.3.3 Clocking .. 17
4.3.4 Multicycle Paths.. 18
4.3.5 Dynamic Clock Switching .. 20
4.3.6 Configuration .. 20

4.4 Clock gating .. 20
4.4.1 Overview... 20
4.4.2 LEON clock gating ... 20
GUIDE, Jan 2016, Version 1.5.0 2 www.cobham.com/gaisler

LEON/GRLIB Guide
5 Debug communication links ... 22
5.1 Overview ... 22

5.2 Available debug link controllers.. 22

6 Core specific design recommendations .. 23
6.1 Overview ... 23

6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU).. 23

6.3 SVGA Controller (SVGACTRL) .. 23

7 GRLIB AMBA Test Framework ... 24
7.1 Overview ... 24

7.2 AT AHB Master ... 24
7.2.1 Description .. 24
7.2.2 Initialization and Instantiation .. 24
7.2.3 Simple Accesses.. 25

7.3 AT AHB Slave ... 26
7.3.1 Description .. 26
7.3.2 Initialization and Instantiation .. 26
7.3.3 Controlling AT_AHB_SLV... 28

7.4 AT AHB Controller.. 30
7.4.1 Description .. 30
7.4.2 Usage... 30

8 Support .. 31
GUIDE, Jan 2016, Version 1.5.0 3 www.cobham.com/gaisler

GUIDE, Jan 2016, Version 1.5.0 4 www.cobham.com/gaisler

LEON/GRLIB Guide

1 Introduction

1.1 Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SoC)
development. The IP cores are centered around a common on-chip bus, and use a coherent method for
simulation and synthesis. The library is vendor independent, with support for different CAD tools and
target technologies. A unique plug&play method is used to configure and connect the IP cores with-
out the need to modify any global resources.

The LEON3 and LEON4 processors are synthesisable VHDL models of 32-bit processor compliant
with the SPARC V8 architecture. The models are highly configurable and particularly suitable for
SoC designs. Both LEON3 and LEON4 are distributed as integrated parts of the GRLIB IP Library.

This configuration and development guide is intended to aid designers when developing systems
based on LEON/GRLIB. The guide complements the GRLIB IP Library User’s Manual and the
GRLIB IP Core User’s Manual. While the IP Library user’s manual is suited for RTL designs and the
IP Core user’s manual is suited for instantiation and usage of specific cores, this guide aims to help
designers make decisions in the specification stage.

1.2 Other Resources

There are several documents that together describe the GRLIB IP Library and Cobham Gaisler’s IP
cores:

• GRLIB IP Library User’s Manual (grlib.pdf) - Main GRLIB document that describes the library
infrastructure, organization, tool support and on-chip bus.

• GRLIB IP Core User’s Manual (grip.pdf) - Describes specific IP cores provided with the GRLIB
IP library. Also specifies which cores that are included in each type of GRLIB distribution.

• GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB
IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

• GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as
part of the add-on package for FT-FPGA.

1.3 Licensing

Some of the cores mentioned in this document (such as LEON4 and the AHB bridges) are only avail-
able in the commercial versions of GRLIB.

LEON/GRLIB Guide
2 System Design Guidelines

2.1 Introduction

The design and partitioning of a system strongly depends on the intended use for the system. The sec-
tions below make general recommendations based on the components available in GRLIB.

2.2 Minimal System

A minimal LEON/GRLIB system consists of the following IP cores:

TABLE 1. Minimal LEON system

Core Description

CLKGEN Clock generator

RSTGEN Reset generator. Generating a glitch free on-chip system reset signal.

AHBCTRL AHB arbiter/controller.

APBCTRL AHB/APB bridge/controller. Must be included in order to interface
peripheral cores such as interrupt controller and timer unit.

LEON3/4 LEON3/4 processor

IRQMP Interrupt controller

GPTIMER General Purpose Timer Unit

MEMCTRL Memory controller providing access to (P)ROM and RAM. The
GRLIB IP Library contains several memory controllers. It is also possi-
ble to include on-chip ROM and RAM by using the AHBROM and
AHBRAM IP cores.

In addition to the cores described above it is recommended to include a LEON Debug Support Unit
(DSU) and a debug communication link to be able to control the processor and inspect the system via
the GRMON Debug Monitor. GRLIB contains several debug communication link (DCL) cores. All
DCL cores are controlled over an external link to make accesses on an on-chip AHB bus. Examples of
DCL cores are the AHBJTAG, AHBUART and USBDCL cores. See section 5 for more information.

In order for the processor to be able to communicate with the outside world, an 8-bit UART and a
General Purpose I/O port is also typically included in a LEON design.

With the above considerations the recommended minimal LEON/GRLIB system also includes the
following cores:

TABLE 2. Additional recommended cores for minimal LEON system

Core Description

DSU3/4 LEON Debug Support Unit

AHBJTAG/
AHBUART/
USBDCL/
GRETH

Debug communication link. AHBJTAG provides an external JTAG
link. Other examples include AHBUART (serial UART), USBDCL
(USB), GRETH (Ethernet debug communication link is available as
part of Ethernet MAC core).

APBUART 8-bit UART

GRGPIO General Purpose I/O Port

2.3 Memory Map

2.3.1 Overview

Most LEON systems use a memory map where ROM (boot PROM) is mapped at address
0x00000000 and RAM is mapped at address 0x40000000. Traditionally the AHB/APB bridge has
been mapped at 0x80000000 and peripherals such as timer, interrupt controller and UART have been
GUIDE, Jan 2016, Version 1.5.0 5 www.cobham.com/gaisler

LEON/GRLIB Guide
placed at fixed offsets in the APB address space. Table 3 shows the base addresses historically used in
LEON systems.

TABLE 3. Peripheral base addresses, legacy systems

Base address Description

0x80000000 LEON2 memory controller

0x80000100 Generic UART (APBUART)

0x80000200 Multi-processor interrupt controller (IRQMP)

0x80000300 Modular timer unit (GPTIMER)

Some software may not read all peripheral core base addresses from plug&play and instead assume
that some peripherals are mapped at these fixed offsets. One of the affected software packages is the
BCC toolchain, where the -qambapp switch must be given in order for the produced software to find
the UART, timer and interrupt controller in case these peripherals are not mapped at the addresses
given in table 3.

The traditional memory map described above does not fit all systems. In particular one or several
large memory area (>= 1 GiB) may be difficult to place as the standard AHB decoder in GRLIB con-
strains the base address of a memory area based on the memory area size. Other reasons include that
the use of AHB-to-AHB bridges that limit how the memory areas can be arranged. As a result of this,
there are several LEON/GRLIB designs with different memory maps. In order to ease software devel-
opment, this document contains some recommendations on how memory maps should be arranged.
Section 2.3.2 shows a traditional LEON/GRLIB memory map and section 2.3.3 contains recommen-
dations on how to arrange memory maps that contains large memory areas.

2.3.2 Typical LEON/GRLIB Memory Map

In order to use toolchains and other software distributed by Cobham Gaisler, some constraints in the
system’s memory map should be observed. A typical LEON3 system has the following memory map:

TABLE 4. Typical LEON3 memory map

Base address Description

0x00000000 PROM

0x40000000 RAM base address. Some systems place SRAM at address 0x40000000
and SDRAM at base address 0x60000000. When SRAM is disabled the
memory controller may automatically adjust the SDRAM base address
to 0x40000000.

0x80000000 Base address of first AHB/APB bridge connecting interrupt controller,
UART(s) and timer unit.

0x90000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The most important areas in the table above are base addresses for ROM and RAM. The default linker
scripts make assumptions on the locations of these areas. Also, software that makes use of the GRLIB
AMBA plug’n’play areas often assume the main plug’n’play area to be located at 0xFFFFF000. The
information in this area is used by software to dynamically find the addresses of all peripherals in the
system.

The location of the first AHB/APB bridge (0x80000000 in the table above) is generally of less impor-
tance. Some legacy software may assume that the bridge is located at the specified address.

The typical memory map given above constrains the maximum size of a memory area in the design.
The GRLIB infrastructure requires that memory areas are binary aligned according to their size. This
means that a 2 GiB memory area must start on address 0x00000000 or address 0x80000000. In order
GUIDE, Jan 2016, Version 1.5.0 6 www.cobham.com/gaisler

LEON/GRLIB Guide
to accommodate memory areas of 2 GiB some systems use variations of the memory map as shown in
table 5.

2.3.3 Memory Map in Systems That Need 2 GiB Memory Area

TABLE 5. Memory map accomodating 2 GiB main memory area

Base address Description

0x00000000 RAM

0x80000000 Other large area, for instance PCI bridge mapping PCI memory

0xC0000000 PROM / Memory mapped IO

0xD0000000 AHB/APB bridge

0xE0000000 Debug Support Unit register interface

0xFFF00000 AHB I/O area (if used by any core)

0xFFFFF000 Plug’n’play area (always located within AHB I/O area)

The memory map in table 5 allows a 2 GiB memory map in the address range 0x00000000 -
0x7FFFFFFF and is supported by the toolchains supplied by Cobham Gaisler by giving an extra
switch (see the toolchain and OS documentation for details). Note that the default start address for a
LEON processor is 0x0. If the memory map above is used, the reset start address should be changed
to 0xC0000000.

Existing LEON systems use variations of the above memory map. The main difficulties that can arise
from different memory maps is that the RAM and ROM areas may collide in linker scripts and boot
loaders. It is therefore recommended that RAM is always mapped at 0x40000000 or 0x00000000 and
that ROM (boot PROM area) is mapped at 0x00000000 or 0xC0000000.

Special switches may be required when building the application if RAM is mapped at 0x00000000.
See toolchain documentation for details.

2.3.4 AHB I/O Area and GRLIB Plug&Play Areas

It is recommended that the default addresses are used for AHB I/O areas (determined by generic on
AHBCTRL) and GRLIB AMBA plug&play areas (determined via generics on AHBCTRL and
APBCTRL). Software scanning routines will assume that one plug&play area is located at
0xFFFFF000.

It is possible to place the AHB I/O area and the AHB plug&play area so that it shadows another AHB
area. As an example a PCI core can be mapped at address 0xC0000000 - 0xFFFFFFFF while the
plug&play area is still reachable at offset 0xFFFFF000. While such memory maps are perfectly valid
and useful for many systems it generally not recommended to let the AHB I/O or plug&play area
shadow another area as software drivers may not recognize that some of the memory area assigned to
a core is essentially unreachable. When an AHB I/O area or the plug&play area shadows another
AHB slave it means that the AHB slave will not be selected when an access is made to the address
range occupied by AHB I/O or plug&play.

2.4 Interrupt Assignments

2.4.1 Overview

The LEON processor and interrupt controller provides 15 interrupt lines in the default configuration.
Interrupt 15 is non-maskable, which leaves 14 interrupts usable for peripheral cores. The multiproces-
sor interrupt controllers (IRQMP and IRQ(A)MP cores) can be extended to provide 16 additional
interrupts, called extended interrupts.

The GRLIB interrupt infrastructure allows any number of cores to share the same interrupt line. Note,
however, that sharing interrupts requires that the software drivers can handle shared interrupts. Also,
the time required to serve an interrupt request may be significantly prolonged if software needs to
check a large number of registers in order to determine if a peripheral asserted an interrupt.
GUIDE, Jan 2016, Version 1.5.0 7 www.cobham.com/gaisler

LEON/GRLIB Guide
Some operating systems place additional constraints on interrupt assignments. The subsections below
describe the requirements of each OS. The basic rules to follow in order to be able to run the maxi-
mum amount of software can be summarized with:

1. If possible, have one dedicated interrupt for each interrupt source (no shared interrupts).
2. Configure the timer unit (GPTIMER) to have dedicated interrupts for each timer
3. Place the timer interrupts within the range 2 - 12
4. Leave interrupts lines 13 - 15 unused

The subsections below dealing with operating systems may become outdated due to changes in the
operating systems. If in doubt, please consult the OS documentation or contact Cobham Gaisler for
the latest information.

2.4.2 Linux 2.6

Interrupt 15 is used for cross-calls. Interrupt 13 is the default selection for inter-processor-interrupts
(IPI). The interrupt line to be used for IPI can be selected when building the kernel and cannot be
shared with peripherals.

Linux also requires that the first timer on the general purpose timer unit (GPTIMER) has a dedicated
interrupt. For SMP operation the second timer must also have a dedicated interrupt line allocated.

2.4.3 RTEMS

RTEMS supports extended interrupts. Interrupt 14 is used for cross-CPU messaging in AMP systems.
This interrupt is defined in leon.h: LEON3_MP_IRQ, cannot be a shared interrupt and must be in the
range 1 .. 14.

RTEMS SMP is at the time of writing not finished and requirements are not known.

Timer 0 of GPTIMER 0 is the system clock timer, however RTEMS can be used without a timer.
There are two cases depending on which RTEMS distribution that is used:

Classical/official RTEMS BSP: GPTIMER0.timer0 must have separate IRQ and the interrupt must be
in the range 1 .. 14.

“Driver manager BSP” (RCC LEON3/4 BSP): Can handle both separate and shared IRQs on GPTI-
MER, interrupt can be in the range 1 .. 31 (no limitations).

2.4.4 VxWorks

VxWorks makes use of interrupt 14 for inter-processor-interrupts (IPI). This interrupt should not be
shared with peripherals.

2.5 Device Specific Identification

GRLIB systems have two identifiers in the system’s plug&play area that can be used to distinguish a
particular device: The GRLIB build ID and the GRLIB System Device ID. The GRLIB build ID is set
globally for the full library and the device ID is set per design via the AHBCTRL VHDL generic
devid (refer to the AHBCTRL section in GRLIB IP Core User’s Manual, grip.pdf). This VHDL
generic should be set to a unique value for all new designs. The file lib/grlib/amba/devices.vhd lists
device IDs, under the comment grlib system device id’s, used for some existing designs. It is recom-
mended that customer designs use an ID larger than 16#0a00#. Please contact Cobham Gaisler sup-
port if you wish to have you device ID added to the listing in devices.vhd.

Communication interfaces may have additional vendor and device identifiers. This is, for instance,
the case for JTAG, PCI and USB. For the USB debug link it is recommended that users keep the
Cobham Gaisler IDs so that GRMON may properly detected the debug link. For all other identifiers
the implementers of a device should use their own IDs as assigned by the appropriate organisations.
Re-use of Cobham Gaisler’s vendor/manufacturer ID may prevent the device from fully functioning
together with software and debug tools.
GUIDE, Jan 2016, Version 1.5.0 8 www.cobham.com/gaisler

LEON/GRLIB Guide
3 LEON design information

3.1 Introduction

The sections below contain recommendations on how to configure the LEON processors depending
on system requirements.

3.2 General Recommendations

3.2.1 SPARC V9 CASA

The LEON4 processor and later revisions of the LEON3 processor contain support for the SPARC V9
CASA instruction. It is recommended that all new LEON3 implementations include support for
CASA (this is a strict requirement if the system will run WindRiver VxWorks in SMP).

3.2.2 Data Cache Snooping

To keep the data cache synchronized with external memory, cache snooping can be enabled. When
enabled, the data cache monitors write accesses on the AHB bus to cacheable locations. If another
AHB master writes to a cacheable location that is currently cached in the date cache, the correspond-
ing cache line is marked as invalid.

Data cache snooping is of high importance for SMP systems and, in general, both simplifies and
increases performance in systems with multiple masters. Note that the processor(s) snoop on the bus
to which they are directly connected. In a system with multiple AHB buses, snooping will only work
on the bus to which the processors are connected. Snooping will not provide cache coherency if, for
instance, there are masters connected between a Level-2 cache and memory, while the processors are
located in front of the Level-2 cache.

If the processor(s) is implemented with a memory management unit (MMU), then extra physical tags
must be enabled.

3.2.3 V7 and FPU

When the LEON is implemented with an FPU it should also include hardware support for multiply
and divide (SPARC V8 MUL/DIV selected with the LEON VHDL generic v8). Otherwise a SPARC
V7 processor with FPU will be obtained and this configuration may not be supported by prebuilt
packages and toolchains.

3.3 LEON Example Configurations

3.3.1 Overview

The subsections below show three different example configurations for LEON processors; a minimal
configuration used to target low area and high frequency, a typical configuration with all features
enabled, and a high-performance configuration where the requirements on processing performance
outweigh area and power considerations.

Each section contains a table with recommended values for some of the LEON processor VHDL
generics. If you are using the xconfig GUI to configure the processor then please note that the VHDL
generic names do not directly correspond to the configuration options in the GUI. The descriptions of
the configuration settings should provide enough information to do appropriate configuration selec-
tion also via xconfig. The xconfig tool also has support to initialize the processor configuration with
values from the three example configurations described in the sections below. See the configuration
help text in xconfig for the option Force values from example configuration in the Processor sub
menu for additional information.

Also note that all listed configuration options do not apply to all LEON processors. For instance, the
LEON3 processor has a VHDL generic called bp that controls the inclusion of branch predication,
while the LEON4 processor is always implemented with support for branch prediction.

3.3.2 Minimal LEON Configuration

This LEON configuration is aimed at resource constrained systems where the area requirements of the
processor core needs to be minimized. Note that using an area minimized configuration may not nec-
GUIDE, Jan 2016, Version 1.5.0 9 www.cobham.com/gaisler

LEON/GRLIB Guide
essarily reduce the system’s performance since it may be possible to achieve a higher operating fre-
quency by reducing the amount of logic in the processor core.

Table 6 below shows recommended values for some of the LEON processor VHDL generics to attain
a minimal configuration in terms of area.

TABLE 6. Minimal LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 0 Some area can be saved by removing the Debug Support Unit
(DSU). However, this unit can prove to be invaluable at least
during the software development phase.

fpu 0 Disable floating-point unit

v8 0 Do not include support for SPARC V8 MUL/DIV instructions

mac 0 Do not include support for SPARC V8e SMAC/UMAC

nwp 0 Disable hardware watchpoints

icen / dcen 1 Include processor caches

isets / dsets 1 Direct mapped instruction and data cache

irepl / drepl 2 Random replacement policy for both instruction and data cache
(setting is unused for direct-mapped cache)

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 0 Disable data cache snooping (see section 3.2.2)

mmuen 0 Disable memory management unit (MMU). Note: May be required
depending on software applications.

lddel 1 1-cycle load delay

tbuf 0 Disable instruction trace buffer (NOTE: Including the instruction
trace buffer may be of high value during software development
and debug).

pwd 1 Power-down implementation. Choose 2 if frequency target is not
met.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. If SMP is enabled then the dsnoop VHDL
generic should also be set accordingly.

bp 0 Disable branch prediction
GUIDE, Jan 2016, Version 1.5.0 10 www.cobham.com/gaisler

LEON/GRLIB Guide
3.3.3 General Purpose LEON Configuration

This LEON configuration is aimed for general purpose processing balancing performance against
area and power requirements.

TABLE 7. General purpose LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu - Include floating-point unit based on application requirements. A
floating-point unit is highly recommended for most systems.
LEON processors can primarily interface the GRFPU or GRFPU-
lite floating point unit. The GRFPU is a high-performance pipe-
lined FPU with high area requirements. GRFPU-lite provides a
balanced option with high acceleration of floating-point computa-
tions combined with lower area requirements compared to
GRFPU.

v8 2 Include support for SPARC V8 MUL/DIV instructions using a 5-
cycle multiplier. Note that if the target technology has multiplier
blocks a single-cycle multiplier (v8 generic set to 1) may provide
lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions.

nwp 2 Include two hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 2 Random replacement policy for both instruction and data cache, or
possibly LRU replacement (irepl/drepl set to 0).

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum /
dtlbnum

8 Use eight entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp 0 Disable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic.

bp 1 Enable branch prediction

3.3.4 High Performance LEON Configuration

This LEON configuration is aimed at high performance processing where the needs for computational
speed outweighs area and power requirements.
GUIDE, Jan 2016, Version 1.5.0 11 www.cobham.com/gaisler

LEON/GRLIB Guide
In order to reduce the effects of memory latency, a Level-2 cache is recommended for high-perfor-
mance systems. This is of particular interest in multiprocessor systems.

TABLE 8. High-performance LEON processor configuration

VHDL
generic

Recommended
value Description

dsu 1 Include support for the LEON Debug Support Unit (DSU)

fpu 1 - 7 Use GRFPU floating-point unit. Select (FP) multiplier depending
on target technology. For FPGA this would typically be inferred
(1) or technology specific (4). For ASIC DesignWare multiplier (2)
or Module Generator (3).

v8 16#32# Include support for SPARC V8 MUL/DIV instructions using a
32x32 pipelined multiplier. Note that if the target technology has
multiplier blocks a single-cycle multiplier (v8 generic set to 1)
may provide lower area and higher performance.

mac 0 Do not include support for SPARC V8e SMAC/UMAC instruc-
tions

nwp 4 Include support for four hardware watchpoints

icen / dcen 1 Include processor caches.

isets / dsets 2 Implement instruction and data caches with two ways

irepl / drepl 0 Least-Recently-Used replacement policy for instruction and data
caches.

isetsize /
dsetsize

- The size of the caches does not significantly affect the required
logic. Choose cache size according to application requirements and
amount of RAM available on target device.

dnsoop 6 Enable snooping with extra physical tags (see section 3.2.2)

mmuen 1 Enable memory management unit (MMU)

itlbnum /
dtlbnum

16 Use sixteen entries each for the instruction and data MMU transla-
tion look-a-side buffers

tlb_type 2 Use separate translation look-a-side buffers (TLB) with fast write
for data and instruction.

tlb_rep 0 Use LRU TLB replacement

lddel 1 Use 1-cycle load delay

tbuf 4 Use 4 KiB instruction trace buffer.

pwd 2 Timing efficient power-down implementation.

smp > 0 Enable SMP support. If the processor core should be used in an
SMP configuration then see the GRIP documentation on how to set
the SMP generic. Note that several processor entities must be
instantiated. This configuration option only enables support for
SMP, it does not instantiate several processor cores.

bp 1 Enable branch prediction
GUIDE, Jan 2016, Version 1.5.0 12 www.cobham.com/gaisler

LEON/GRLIB Guide
3.3.5 Configuration Settings For Existing LEON Devices

The table below shows configurations for existing Cobham/Aeroflex LEON devices. Please refer to
the previous subsections under section 3.3 for comments and descriptions of the different values.

TABLE 9. LEON processor configurations

VHDL
generic

UT699
Value

UT700
Value

GR712RC
value

GR740
Value

LEON3-
RTAX
example
value

dsu 1 1 1 1 1

fpu 2 2 2 2 0

v8 2 16#32#+4 2 16#32# 0

mac 0 0 0 0 0

nwp 4 4 2 4 2

icen 1 1 1 1 1

isets 2 4 4 4 1

isetsize 4 4 4 4 8

irepl 0 0 0 0 0

ilinesize 8 8 8 8 8

dcen 1 1 1 1 1

dsets 2 4 4 4 1

dsetsize 4 4 4 4 4

drepl 0 0 0 0 0

dlinesize 4 4 4 8 4

dnsoop 6 6 6 6 0

mmuen 1 1 1 1 0

itlbnum /
dtlbnum

16 / 16 16 / 16 16 / 16 16 / 16 - / -

tlb_type 0 2 2 2 0

tlb_rep 0 0 0 0 0

lddel 2 1 1 1 1

tbuf 2 4 4 8 2

pwd 2 2 2 2 2

svt 1 1 1 1 1

smp 0 0 1 1 0

bp N/A (0) 1 1 N/A 0

npasi N/A (0) N/A (0) N/A (0) 1 N/A (0)

pwrpsr N/A (0) N/A (0) N/A (0) 1 N/A (0)

LEON ver-
sion used

LEON3FT
v1

LEON3FT
v2

LEON3FT
v1 with BP

LEON4v0 LEON3FTv1
to LEON3v3

3.4 LEON subsystem (gaisler.subsys.leon_dsu_stat_base)

GRLIB contains a subsystem component that can be used to instantiate the LEON processor, debug
support unit and a statistics unit (performance counters). The subsystem is available in lib/gaisler/
subsys/ and also has a corresponding xconfig script.
GUIDE, Jan 2016, Version 1.5.0 13 www.cobham.com/gaisler

LEON/GRLIB Guide
leon_dsu_stat_base allows to select between LEON3 and LEON4. If LEON4 is selected then the
GRLIB AMBA bus width needs to be set to 64 or 128 bits. This is accomplished by changing the
GRLIB_CONFIG package.

Examples on how to use the subsystem can be seen in the following template designs:

•designs/leon3-gr-cpci-xc4v

•designs/leon3-gr-cpci-xc7k

•designs/leon3-gr-pci-xc5v

•designs/leon3-xilinx-kc705

•designs/leon3-xilinx-ml50x

•designs/leon3-xilinx-ml510

•designs/leon3-xilinx-vc707

Note that the Makefile in these designs also contains special conditions that depend on the selection
between LEON3 and LEON4.
GUIDE, Jan 2016, Version 1.5.0 14 www.cobham.com/gaisler

LEON/GRLIB Guide
4 Multiple Buses, Clock Domains and Clock Gating

4.1 Introduction

This section describes some techniques that can be used with GRLIB to create more complex system
architectures with multiple buses and/or clock domains.

Peripheral IP cores that need to work at a separate clock domain usually have their own clocking and
synchronization built in. This is not explained here, see the core-specific documentation.

4.2 Creating Multi-Bus Systems

4.2.1 Overview

The on-chip bus may become a bottle neck in systems where the processors and peripherals all share
the same bus. The fact that all IP cores are connected together may also introduce high loads in the
system, which can lead to timing issues at implementation. These issues can be solved by partitioning
the system into several AHB buses.

4.2.2 GRLIB Facilities

In order to partition the system into multiple buses, the general-purpose AHB bridge IP cores AHB-
BRIDGE (uni-directional) and AHB2AHB (bi-directional) are included in GRLIB. There are also
special-purpose cores, such as the IOMMU and L2-cache, that have bridge functionality built into
them.

4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems

Software and debug monitors such as GRMON can detect all IP cores connected to the on-chip
bus(es) by scanning the plug&play configuration area. The format and function of this area is
described in the GRLIB User’s Manual and in the GRLIB IP Core User’s Manual documentation for
the AHB controller (AHBCTRL) and AHB/APB bridge (APBCTRL).

In multi-bus systems, each bus will have its own AMBA plug&play configuration area and software
must be able to access all plug&play areas In order for software able to discover all peripherals in a
system. The same applies for the GRMON debug monitor, to discover all peripherals the debug com-
munication link master interface must be connected to a bus from where it can access all plug&play
areas (as well as memory where peripheral registers are mapped).

The plug&play scanning routines discover the presence of multiple AHB buses when it discovers the
slave interface a core such as the Level-2 cache or AHB/AHB bridge (AHB2AHB, AHBBRIDGE).
Upon discovery of a bridge the routine will typically look in the user defined register of the bridge’s
plug&play information to get the base address of the AHB I/O and plug&play area of the second bus.
Excatly how the base address of the plug&play information is communicated to the scanning routine
is specific for each core. The Level-2 cache and AHB/AHB bridges store this address in user defined
register 1 of the core’s AHB slave interface plug&play information. A value of zero in this register
signals to software that plug&play scanning should not be done for the second bus behind the bridge.

When software discovers a bridge to a new bus, scanning should commence using the new plug&play
area address (depth-first scanning) and once the new plug&play area has been handled scanning
should continue on the current bus.

Note that for plug&play scanning to work, all plug&play areas must be accessible from the AHB
master that performs the scan. This means that any bridge between AHB buses must have a window
that allows the plug&play area on the other side of the bridge to be accessed. System software and
debug tools by default start scanning for a plug&play area at the top of AMBA memory space. it is
important that the plug&play area located in this address has pointers so that all other plug&play
areas in the system can be discovered. For instance, the default plug&play area address should not be
occupied by the plug&play area of a bus that is only connected to the rest of the system via the AHB
master interface side of a Level-2 cache or uni-directional bridge. This is because the extra informa-
tion at the AHB master interface does not contain the base address for the plug&play area of the bus
on the AHB slave interface side of the bridge. As a result of this, plug&play scanning routines will
only find one bus in the system.
GUIDE, Jan 2016, Version 1.5.0 15 www.cobham.com/gaisler

LEON/GRLIB Guide
4.2.4 Buses in Different Clock Domains

In order to work around timing issues, or to reduce power consumption, it can make sense to partition
the design also into several clock domains. The AHB/AHB bridges (AHB2AHB, AHBBRIDGE and
GRIOMMU) allows connecting buses with differing operating frequencies together.

The bus clocks on each side of the bridge need to have a frequency ratio relationship and fixed phase
relation. This avoids the need to resynchronize signals on chip which would cause a performance pen-
alty.

If you want to run everything except the processor at half speed, a more efficient solution than using
bridges is to use the LEON double clocking support explained in section 4.3.

4.2.5 Single AHB Bus Example

A typical LEON/GRLIB design is shown in the figure below. The design is centered around one
AMBA AHB bus and also has a AMBA APB bus that connects some of the peripheral cores via an
AHB/APB bridge.

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

8/32-bits memory bus

USBLEON3
Serial

Dbg Link

AHB
Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

16-bit I/O

JTAG
Dbg Link

RS232 JTAG

RS232

Spacewire
Link

LVDS

WDOG

Ethernet
MAC

PHY

PS/2 VGA

VideoPS/2 IF
DAC

CAN 2.0
Link

CAN

SDRAMPROM I/O

USB PHY

port

Building the system around one AHB bus has advantages in that it simplifies system design.

4.2.6 Multi-Bus System Example

Processor

AMBA AHB

Timers IrqCtrl

AMBA APB

LEON3
Serial

Dbg Link
AHB

Controller

Memory
Controller

AHB/APB
Bridge

I/O port UART

JTAG
Dbg Link

RS232 JTAG

Spacewire
Link

LVDS

Ethernet
MAC

PHY

PS/2 SVGA

CAN 2.0
Link

CAN

AHB2AHB
Bridge

Memory
Controller

AHB
Controller

(SVGA) AMBA AHB
GUIDE, Jan 2016, Version 1.5.0 16 www.cobham.com/gaisler

LEON/GRLIB Guide
One example (shown above) of when a multi-bus system resolves bus contention is when a SVGA
controller (SVGACTRL core) is used. The SVGA controller continuously reads a frame buffer
located in external memory. This constant data fetching can consume a significant amount of the
available bus bandwidth, particularly in systems with relatively low system frequencies. The impact
of the SVGA controller bus traffic can be removed by placing the SVGA controller and a dedicated
memory controller on a separate bus. The processor can still access the frame buffer through and uni-
directional bridge.

4.3 LEON3 Double-Clocking

4.3.1 Overview

To avoid critical timing paths in large AHB systems, it is possible to clock the LEON3 processor core
at an inter multiple of the AHB clock. This will allow the processor to reach higher performance
while executing out of the caches. The performance will be higher while executing out of the caches
since the processor core will be running at a higher frequency. On a cache miss the processor will
need to make a bus access and timing of this bus access will be made according to the lower bus fre-
quency. This chapter will describe how to implement a LEON3 double-clocked system using the
LEON3-CLK2X template design as an example.

The LEON3 CPU core be clocked at a multiple of the clock speed of the AMBA AHB bus. When
clocked at double AHB clock frequency, all CPU core parts including integer unit and caches will
operate at double AHB clock frequency while the AHB bus access is performed at the slower AHB
clock frequency. The two clocks have to be synchronous and multicycle paths between the two clock
domains have to be defined at synthesis tool level. Separate components (leon3s2x, leon3x,
leon3ft2x) are provided for the double clocked core. Double clocked versions of DSU (dsu3_2x) and
MP interrupt controller (irqmp2x) are used in a double clocked LEON3 system. An AHB clock quali-
fier signal (clken input) is used to identify end of AHB cycle. The AHB qualifier signal is generated in
CPU clock domain and is high during the last CPU clock cycle under AHB clock low-phase.

4.3.2 LEON3-CLK2X Template Design

The LEON3-CLK2X design is a multi frequency design based on double-clocked LEON3 CPU core.
The LEON3 CPU core and DSU run at multiple AHB frequency internally, while the AHB bus and
other AHB components are clocked by the slower AHB clock. Double clocked version of the inter-
rupt controller is used, synchronizing interrupt level signals between the CPU and the interrupt con-
troller.

The design can be configured to support different ratios between CPU and AHB clock such as 2x, 3x
or 4x. If dynamic clock switching is enabled, an glitch-free clock multiplexer selecting between the
fast CPU clock and the slower AHB clock is used to dynamically change frequency of the CPU core
(by writing to an APB register).

4.3.3 Clocking

The design uses two synchronous clocks, AHB clock and CPU clock. For Xilinx and Altera technolo-
gies the clocks are provided by the clkgen module, for ASIC technologies a custom clock generation
circuit providing two synchronous clocks with low skew has to be provided.

An AHB clock qualifier signal, identifying end of an AHB clock cycle is necessary for correct opera-
tion of the double-clocked cores. The AHB clock qualifier signal (HCLKEN), indicating end of an
AHB clock cycle, is provided by the qmod module. The signal is generated in CPU clock domain and
is active during the last CPU clock cycle during low-phase of the AHB clock. Figure 1 shows timing
for CPU and AHB clock signals (CPUCLK, HCLK) and AHB clock qualifier signal (HCLKEN) for
clock ratios 2x and 3x.
GUIDE, Jan 2016, Version 1.5.0 17 www.cobham.com/gaisler

LEON/GRLIB Guide
Figure 1. Timing diagram for CPUCLK, HCLK and HCLKEN

CPUCLK

HCLK

HCLKEN

CPUCLK

HCLK

HCLKEN

4.3.4 Multicycle Paths

Paths going through both CPU and AHB clock domains have propagation time of one AHB clock
cycle, and should be marked as multicycle paths with following exceptions:

Start point Through End point Propagation time

leon3s2x core

CPUCLK ahbi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

CPUCLK ahbso CPUCLK N CPUCLK

HCLK irqi CPUCLK 1 CPUCLK

CPUCLK irqo HCLK 1 CPUCLK

CPUCLK u0_0/p0/c0/sync0/r[*]
(register)

1 CPUCLK

dsu3_2x core

CPUCLK ahbmi CPUCLK N CPUCLK

CPUCLK ahbsi CPUCLK N CPUCLK

dsui CPUCLK 1 CPUCLK

r[*] (register) rh[*] (register) 1 CPUCLK

irqmp2x core

r2[*] (register) r[*] (register) 1 CPUCLK

* N is ratio between CPU and AHB clock frequency (2, 3, ...)

Sample DC script defining multicycle paths and exceptions is provided in the design directory
(dblclk.dc).

Figure 2 shows synchronization of AHB signals starting in HCLK clock domain and ending in CPU-
CLK domain (inside the double clocked cores LEON3S2X and DSU3_2X). These AHB signals are
captured by registers in CPUCLK domain at the end of AHB clock cycle, allowing propagation time
of 2 or more CPUCLK cycles (one HCLK cycle). The end of the AHB clock cycle is indicated by the
AHB clock qualifier signal HCLKEN. One of the inputs of the AND gate in figure below is connected
to the clock qualifier signal HCLKEN ensuring that the value of the signal AHBI is latched into R2 at
the end of AHB cycle (HCLKEN = ‘1’). The value of signal AHBI is not valid in the CPUCLK clock
domain if the qualifier signal HCLKEN is low. In this case, the AND gate will be closed and the value
of the signal AHBI will not propagate to register R2.
GUIDE, Jan 2016, Version 1.5.0 18 www.cobham.com/gaisler

LEON/GRLIB Guide
Figure 2. Synchronization between HCLK and CPUCLK clock domains

 CPUCLK

HCLK
HCLKEN

D Q D Q

HCLK

D Q

AHBI

 CPUCLK

CPUCLK
Clock Domain Clock Domain

R1 R2

LEON3S2X

Synchronization of AHB signals going from the double clocked cores to the AHB clock domain is
shown if figure 3. The AND gate is open when CPU (or DSU) performs an AHB access (AHBEN =
‘1’). When the AND gate is open, the signal AHBO will be stable during the whole AHB cycle and its
value propagates to the HCLK clock domain (AHB bus). When CPU does not perform AHB access
(CLKEN = ‘1’) the AND gate is closed (AHBEN = ‘0’) disabling propagation of signal AHBO to the
HCLK clock domain.

Figure 3. Synchronization between CPUCLK and HCLK clock domains

 HCLK

CPUCLK

AHBEN

D Q

D Q

CPUCLK

D Q

AHBO

 HCLK

HCLK
Clock Domain Clock Domain

R1

R2

 LEON3S2X

The AND gates in figures 2 and 3 are 2-input clock AND gates. Synthesis tool should not optimize
these AND gates. Sample DC-script puts ‘don’t-touch’ attribute on these cells to prevent optimiza-
tion.

The multicycle constraints for the GRLIB double clocked cores are typically defined by start clock
domain, intermediate points and end clock domain. Although FPGA synthesis tools provide support
for multicycle paths, they do not provide or have limited support for this type of multicycle con-
GUIDE, Jan 2016, Version 1.5.0 19 www.cobham.com/gaisler

LEON/GRLIB Guide
straints (start clock domain, intermediate points, end clock domain). This limitation results in over-
constrained FPGA designs (multicycle paths become single cycle) which are fully functional and suit-
able for FPGA prototyping.

4.3.5 Dynamic Clock Switching

An optional clock multiplexer switching between the CPU and AHB clocks and providing clock for
double-clocked cores can be enabled. The clock multiplexer is used to dynamically change frequency
of the CPU core, e.g. CPU can run at lower AHB frequency during periods with low CPU load and at
twice the AHB frequency during periods with high CPU load.

The clock switching is controlled by writing to the qmod modules APB register (default address
0x80000400), bit 0: writing ‘1’ will switch to the CPU clock and writing ‘0’ will switch to the AHB
clock.

The clock multiplexer is glitch-free, during clock switching the deselected clock is turned-off (gated)
before the selected clock is enabled and selected.

Dynamic clock switching is available for Xilinx and generic technologies.

4.3.6 Configuration

xconfig

Clock ratios 2x, 3x and 4x between CPU and AHB clock are supported. Clock ratio 2x is supported
for all technologies, ratios 3x and 4x are supported for ASIC technologies. Dynamic clock switching
is available for Xilinx and ASIC technologies.

leon3s2x

Double-clocked LEON3 core is configured similarly to standard LEON3 core (leon3s) through
VHDL generics. An additional VHDL generic clk2x is set to ((clock ratio - 1) + (8 * dyn)) where dyn
is 1 if dynamic clock switching is enabled and 0 if disabled.

qmod

Local qmod module generates AHB clock qualifier signal and optionally controls dynamic clock
switching. The module is configured through VHDL - generics defining clock ratio (clkfact), dynamic
clock switching (dynfreq) and address mapping of modules APB register (pindex, paddr, pmask).

irqmp_2x

VHDL generic clkfact should be set to clock ratio between CPU and AHB clocks.

4.4 Clock gating

4.4.1 Overview

GRLIB contains support for using clock gating for both the processors and peripheral IP cores. The
GRCLKGATE unit described in the GRLIB IP Core User’s Manual can be used both to gate peripher-
als and to provide automatic processor (and floating-point unit) clock gating.

4.4.2 LEON clock gating

To further reduce the power consumption of the processor, the clock can be gated-off when the pro-
cessor has entered power-down state. Since the cache controllers and MMU operate in parallel with
the processor, the clock cannot be gated immediately when the processor has entered the power-down
state. Instead, a power-down signal (DBGO.idle) is generated when all outstanding AHB accesses
have been completed and it is safe to gate the clock. This signal should be clocked though a positive-
edge flip-flop followed by a negative-edge flip-flop to guarantee that the clock is gated off during the
clock-low phase. To ensure proper start-up state, the clock should not be gated during reset and at
least 3 clocks after that reset has been de-asserted.
GUIDE, Jan 2016, Version 1.5.0 20 www.cobham.com/gaisler

LEON/GRLIB Guide
Figure 4. Examples of LEON clock gating

AHB CLK

GCLK

CLK

RESETN
DBGO.IDLE D Q D Q

LEON3/4 entity

AHB CLK

GCLK

CLK

RESETN
DSUO.PWD[n]

D Q

LEON3/4 entity

DBGO.IPEND

The processor should exit the power-down state when an interrupt become pending. The signal
DBGO.ipend will then go high when this happen, and should be used to re-enable the clock.

When the debug support unit (DSU3 or DSU4) is used, the DSUO.pwd signal should be used instead
of DBGO.idle. This will ensure that the clock also is re-enabled when the processor is switched from
power-down to debug state by the DSU. The DSUO.pwd is a vector with one power-down signal per
CPU (for SMP systems). DSUO.pwd takes DBGO.ipend into account, and no further gating or latch-
ing needs to be done of this signal. If cache snooping has been enabled, the continuous clock will
ensure that the snooping logic is activated when necessary and will keep the data cache synchronized
even when the processor clock is gated-off. In a multi-processor system, all processor except node 0
will enter power-down after reset and will allow immediate clock-gating without additional software
support.

Clock-tree routing must ensure that the continuous clock (CLK) and the gated clock (GCLK) are
phase-aligned. The template design leon3-clock-gate shows an example of a clock-gated system.
Please refer to the LEON signal descriptions in the GRLIB IP Core User’s Manual document for doc-
umentation on which processor clock inputs that are allowed to be gated-off. Please also see the docu-
mentation for the GRCLKGATE and GRCLKGATE2 IP cores in the same document.
GUIDE, Jan 2016, Version 1.5.0 21 www.cobham.com/gaisler

GUIDE, Jan 2016, Version 1.5.0 22 www.cobham.com/gaisler

LEON/GRLIB Guide

5 Debug communication links

5.1 Overview

GRLIB contains several debug communication link (DCL) controller cores. All DCL cores are con-
trolled over an external link to make accesses on an on-chip AHB bus. These communcation links can
be used by an external debug monitor to perform debugging operations on the system or by other
external devices that need direct memory access to the design.

5.2 Available debug link controllers

A debug communication link controller is an IP core that has that supports communication over an
external interface without on-chip software involvement. The IP core decodes incoming traffic and
translates the traffic to operations on the AMBA bus. The table below lists IP cores that can act as
debug communication link controllers.

TABLE 10. Debug Communication Link controllers

Interface IP core
AMBA access
size supported Notes

Serial UART AHBUART Word Supported by GRMON

JTAG AHBJTAG Byte, Half-word,
Word

Supported by GRMON

Ethernet GRETH /

GRETH_GBIT

Word DCL functionality is optional to include in
Ethernet controllers. Supported by
GRMON.

PCI GRPCI / GRPCI2 Byte, Half-word,
Word

GRMON can make use of PCI target to
access system.

SpaceWire
RMAP

GRSPW

GRSPW2 /

GRSPWROUTER

Read: Byte,
Half-word, Word

Write: Word

RMAP hardware handler is optional to
include in SpaceWire controllers. GRMON
can connect via GRESB Ethernet-to-Space-
Wire bridge. The controllers translate sub-
word read accesses to 32-bit read
operations.

USB GRUSB_DCL Word Supported by GRMON

I2C I2C2AHB Byte, Half-word,
Word

Not supported by GRMON

SPI SPI2AHB Byte, Half-word,
Word

Not supported by GRMON

GUIDE, Jan 2016, Version 1.5.0 23 www.cobham.com/gaisler

LEON/GRLIB Guide

6 Core specific design recommendations

6.1 Overview

The subsections below contain system design recommendations when using specific GRLIB cores.

6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)

The AHB/AHB bridges can be of high value when partitioning the system into several clock domains
or when there is a need to separate bus traffic. The use of a bridge will result in increased latencies
when accesses need to traverse over the bridge.

For bi-directional bridge configurations the designer needs to be aware that collisions (attempts to tra-
verse the bridge both ways simultaneously) will mean that the access on the slave bridge will be
aborted and then re-attempted. This situation can potentially lead to starvation and deadlocks.

When instantiating the bridge with a prefetch buffer the buffer should be scaled so that it does not
prefetch unnecessarily large amounts of data. If the master(s) traversing the bridge have a maximum
burst length of eight words, then the bridge’s prefetch buffer should not be larger than eight words.

6.3 SVGA Controller (SVGACTRL)

The SVGA controller can consume a significant amount of the available bus bandwidth. Even if cal-
culations show that there is plenty of bandwidth available, the inclusion of SVGACTRL may add bus
access latencies that significantly impact computational performance. For design that include a
SVGA controller it is recommended to place the SVGA controller on a separate bus with a dedicated
frame buffer memory.

LEON/GRLIB Guide
7 GRLIB AMBA Test Framework

7.1 Overview

GRLIB has a number of packages that can aid in verification of AMBA cores. New developments
should use the GRLIB AMBA Test Framework (ATF). The test framework consists of an AHB mas-
ter core, an AHB slave core and an AHB arbiter/controller core. The AHB master and slave cores
have debug interfaces that allow them to be controlled using external stimuli.

The sections below give an overview of the components in the framework. The test framework is not
distributed as a product and there is no complete user’s manual. The test master and slave is con-
trolled by procedure calls that are documented in their respective VHDL packages (described below).

ATF files are located in the directory <grlib root>/lib/grlib/atf/. All GRLIB distributions do not
include ATF. If the atf directory is missing from your GRLIB tree, then your version of GRLIB does
not contain the components described in this section.

NOTE: The GRLIB AMBA test framework is NOT included in the free GRLIB-GPL.

7.2 AT AHB Master

7.2.1 Description

The AT AHB Master (AT_AHB_MST) is a non-synthesizable AHB master core with a debug inter-
face so that the master can be controlled via function calls.

7.2.2 Initialization and Instantiation

The component for the master is defined in the package grlib.at_pkg and the procedure calls to con-
trol the master is available in the package grlib.at_ahb_mst_pkg. In order to instantiate the master, the
following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_mst_pkg.all;
use grlib.testlib.all;

The component for AT_AHB_MST has the following interface:
component at_ahb_mst is
 generic(
 hindex: in Integer := 0;
 vendorid: in Integer := 0;
 deviceid: in Integer := 0;
 version: in Integer := 0;
 grlibdatamux: in integer := 1);
 port(
 -- AMBA AHB system signals
 hclk: in std_ulogic;
 hresetn: in std_ulogic;
 --AHB Interface
 ahbi: in ahb_mst_in_type;
 ahbo: out ahb_mst_out_type;
 --Operation Scheduling Interface
 atmi: in at_ahb_mst_in_type;
 atmo: out at_ahb_mst_out_type
);
 end component;

The only VHDL generics that require proper assignment are hindex and grlibdatamux. The hindex
generic must match the bus index in the same way as for other GRLIB AHB masters. The grlibdata-
mux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux => 0)
or the simplified data multiplexing scheme (grlibdatamux => 1) commonly used in GRLIB (see the
GRLIB IP Library User’s Manual, grlib.pdf, for details). For use in a normal GRLIB system the
default value is recommended. An example instantiation of AT_AHB_MST can be found in verifica-
tion/at/at_tb.vhd. At the top of the file the libraries mentioned above are included. The test bench
instantiates several AMBA masters, the signals used to control the debug interfaces are created as:
signal atmi : at_ahb_mst_in_vector(0 to 2);
signal atmo : at_ahb_mst_out_vector(0 to 2);
GUIDE, Jan 2016, Version 1.5.0 24 www.cobham.com/gaisler

LEON/GRLIB Guide
The masters are then instantiated using a generate loop:
-- Masters
mstrs01 : for i in 0 to 2 generate
 amst : at_ahb_mst
 generic map(
 hindex => FIRST_MASTER_INDEX+i,
 vendorid => 0,
 deviceid => 0,
 version => 0)
 port map(
 -- AMBA AHB system signals
 hclk => clk,
 hresetn => rstn,

 -- Direct Memory Access Interface
 atmi => atmi(i),
 atmo => atmo(i),

 -- AMBA AHB Master Interface
 ahbi => ahbmi,
 ahbo => ahbmo(FIRST_MASTER_INDEX+i));
end generate;

The masters are controlled by calls from the test bench process. Before use, each master debug inter-
face must be initialized. In verification/at/at_tb.vhd this is done by calls to at_init(..):
testbench: process

----- variable definitions removed -----

 begin -- process testbench

 -- Testbench initialization

 Print("--");
 Print("AMBA Test Framework test bench");
 Print("--");
 for i in atmi'range loop
 at_init(i, atmi);
 end loop;
 wait until rstn = '1'

7.2.3 Simple Accesses

After initalization has been performed, as described in the previous section, the procedures defined in
grlib.at_ahb_mst_pkg (lib/grlib/atf/at_ahb_mst_pkg.vhd) can be used to command the master to per-
form accesses. The procedures are either read or write procedures. A read or write procedure can be
either blocking (call will not return before the access is completed) or non-blocking (call will return
immediately and another call must be made at a later time in order to complete the command on the
debug interface). All non-blocking procedures have names ending with _nb, the procedures used to
complete a non-blocking call have names that end with _nb_fin.

Procedures that make single accesses are named in the following format: at_read_<size>(..) or
at_write_<size>(..). Where <size> can be 8, 16, 32, 64, 128 or 256. The non-blocking pairs are
named at_read_<size>_nb(..) / at_read_<size>_nb_fin(..) and at_write_nb(..) / at_write_nb_fin(..).
There are also procedures that make burst accesses. These have the word burst in their name, for
instance at_write_burst_32(..). The procedure names are overloaded and there can be several variants
of a procedure, with a different number of parameters.

The simplest way to perform a single access, in this case a write, is to use a call like:
at_write_32(
address => X”h40000000”,
data => X”01234567”,
atmi => atmi(0),
atmo => atmo(0));

The non-blocking variant is (here we assume that we have defined the variable id as an integer and the
variable ready as a boolean):
at_write_32_nb(
 address => X”h40000000”,
 data => X”01234567”,
 waitcycles => 0,
 lock => false,
 hprot => “0011”,
 back2back => false,
 screenoutput => false,
GUIDE, Jan 2016, Version 1.5.0 25 www.cobham.com/gaisler

LEON/GRLIB Guide

 id => id,
 atmi => atmi(0),
 atmo => atmo(0));

-- Here other tasks can be performed

at_write_32_nb_fin(
 id => id,
 wait_for_op => true,
 screenoutput => false,
 ready => ready,
 atmi => atmi(0),
 atmo => atmo(0));

The first call initiates a write access to address 0x40000000 with data 0x01234567. The access should
start immediately, not assert HLOCK and use the specified HPROT (0b0011). The first call will
assign an access identifier to the variable id. This identifier is used by AT_AHB_MST to keep track of
the access. The same access identifier must then be used in the call to at_write_32_nb_fin(..). The
core will try to perform the write access even if the call to at_write_32_nb_fin(..) never takes place.
However, if at_write_32_nb_fin(..) is never called, the core will keep a record of the completed
access in its internal data structures forever.

A call to at_<operation>_<size>_nb_fin(..) procedure will block if the wait_for_op parameter is set
to true. If wait_for_op is set to false, the call will return immediately and the ready variable must be
checked to see if AT_AHB_MST completed the access.

The description given for write operations above also applies to read operations. Note that for non-
blocking reads (at_read_<size>_nb(..) / at_read_<size>_nb_fin(..)), the data will be returned when
at_read_<size>_nb_fin(..) is called. The first call only tells the master to initiate an access, the
at_read_<size>_nb_fin(..) call will tell you when, and if, the access has completed and the master
will have data available.

As mentioned above, the core can also generate burst accesses. In the case of non-blocking burst
accesses, the id and ready parameters will be arrays instead of single values.

The description above covers basic operation of AT_AHB_MST. Please refer to the grlib.at_ahb_m-
st_pkg package located at lib/grlib/atf/at_ahb_mst_pkg.vhd to see all available procedure calls. Each
call and its parameters are documented in the package.

7.3 AT AHB Slave

7.3.1 Description

The AT AHB Slave (AT_AHB_SLV) is an non-synthesizable AHB slave core with a debug interface
that allows insertion of custom AHB replies and access to the core’s internal memory structures.

7.3.2 Initialization and Instantiation

The component for the slave is defined in the package grlib.at_pkg and the procedure calls used to
access the slave via its debug interface are available in the package grlib.at_ahb_slv_pkg. In order to
instantiate the slave, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
use grlib.at_ahb_slv_pkg.all;

The component for AT_AHB_SLV has the following interface:
component at_ahb_slv is
 generic (
 hindex : integer := 0; -- Slave index
 bank0addr : integer := 0;
 bank0mask : integer := 0;
 bank0type : integer := 0; -- 0: memory area 1: I/O area
 bank0cache : integer := 0; -- Cachable
 bank0prefetch : integer := 0; -- Prefetchable
 bank0ws : integer := 0; -- Waitstates
 bank0rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank0dataload : integer := 0; -- Load data from file
 bank0datafile : string := "none"; -- Initial data for bank
 bank1addr : integer := 0;
 bank1mask : integer := 0;
 bank1type : integer := 0; -- 0: memory area 1: I/O area
GUIDE, Jan 2016, Version 1.5.0 26 www.cobham.com/gaisler

LEON/GRLIB Guide

 bank1cache : integer := 0; -- Cachable
 bank1prefetch : integer := 0; -- Prefetchable
 bank1ws : integer := 0; -- Waitstates
 bank1rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank1dataload : integer := 0; -- Load data from file
 bank1datafile : string := "none"; -- Initial data for bank
 bank2addr : integer := 0;
 bank2mask : integer := 0;
 bank2type : integer := 0; -- 0: memory area 1: I/O area
 bank2cache : integer := 0; -- Cachable
 bank2prefetch : integer := 0; -- Prefetchable
 bank2ws : integer := 0; -- Waitstates
 bank2rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank2dataload : integer := 0; -- Load data from file
 bank2datafile : string := "none"; -- Initial data for bank
 bank3addr : integer := 0;
 bank3mask : integer := 0;
 bank3type : integer := 0; -- 0: memory area 1: I/O area
 bank3cache : integer := 0; -- Cachable
 bank3prefetch : integer := 0; -- Prefetchable
 bank3ws : integer := 0; -- Waitstates
 bank3rws : integer := 0; -- Random wait states 'ws' is the maxmimum
 bank3dataload : integer := 0; -- Load data from file
 bank3datafile : string := "none"; -- Initial data for bank
 grlibdatamux : integer := 1 -- GRLIB AMBA data MUX:ing
);
 port (
 rstn : in std_ulogic;
 clk : in std_ulogic;
 ahbsi : in ahb_slv_in_type;
 ahbso : out ahb_slv_out_type;
 dbgi : in at_slv_dbg_in_type;
 dbgo : out at_slv_dbg_out_type
);
 end component;

The hindex generic must match the bus index in the same way as for other GRLIB cores. The grlib-
datamux generic decides if the core should use AMBA compliant data multiplexing (grlibdatamux =>
0) or the simplified data multiplexing scheme (grlibdatamux => 1) used in GRLIB (see the GRLIB IP
Library User’s Manual, grlib.pdf, for details).

For use in a normal GRLIB system, the default value is recommended. The other generics define the
size and behavior of the, up to, four available AHB memory areas (banks). Each bank is configured
via a set of generics described in the table below:

TABLE 11. AT_AHB_SLV VHDL generics

VHDL generic Description

bank*addr Bank base address. Set in the same manner as for all GRLIB AHB slaves

bank*mask Bank mask. Decides how many of the bank*addr bits that are matched against the
incoming AMBA HADDR and thereby also determines the size of the memory area.

bank*type Selects if the bank is an AHB memory area or an AHB I/O area. The AT_AHB_SLV
package defines to constants that can be used to select the type: AT_AHBSLV_MEM
and AT_AHBSLV_IO.

bank*cache Determines if bank is cacheable. This value is only used when banktype is set to
AT_AHBSLV_MEM.

bank*prefetch Determines if the bank is prefetchable. This value is only used when banktype is set
to AT_AHBSLV_MEM.

bank*ws Number of wait states that the core will insert on each access to the bank.

bank*rws Enables random wait states. If this generic is set to AT_AHBSLV_RANDOM_WS,
the core will insert between 0 and bank*ws wait states on each access. If this generic
is set to AT_AHBSLV_FIXED_WS the core will always insert bank*ws wait states.

bank*dataload If this generics is non-zero, the core will load initial memory data from the SREC file
specified by bank*datafile.

bank*datafile See above.
GUIDE, Jan 2016, Version 1.5.0 27 www.cobham.com/gaisler

LEON/GRLIB Guide
An example instantiation of AT_AHB_SLV can be found in verification/at/at_tb.vhd. At the top of
the file the libraries mentioned above is included. The signals used to make accesses to AT_AH-
B_SLV’s debug interface are created with:
signal dbgi : at_slv_dbg_in_type;
signal dbgo : at_slv_dbg_out_type;

An example instantiation of AT_AHB_SLV looks like:
ahbslv0 : at_ahb_slv
 generic map (
 hindex => 0,
 -- Bank 0 configuration;
 bank0addr => 16#000#,
 bank0mask => 16#FFF#,
 bank0type => AT_AHBSLV_MEM,
 bank0cache => 1,
 bank0prefetch => 1,
 bank0ws => 1,
 bank0rws => AT_AHBSLV_FIXED_WS,
 bank0dataload => 0,
 bank0datafile => "none")
 port map (
 rstn => rstn, clk => clk,
 ahbsi => ahbsi, ahbso => ahbso(0),
 dbgi => dbgi, dbgo => dbgo);

After the rstn signal has gone high the core will be ready to handle incoming AMBA accesses. If no
file is used to initialize the memory, all memory position will contain ‘U’.

7.3.3 Controlling AT_AHB_SLV

When the slave has left system reset (rstn input is high), the procedures defined in grlib.at_ah-
b_slv_pkg (lib/grlib/atf/at_ahb_slv_pkg.vhd) can be used to control the slave’s behavior and to access
the slave’s internal memory.

Accesses to the slave’s internal memory are made via the ahbslv_read(..) and ahbslv_write(..) proce-
dures. These procedures have the following interface:
 -- Subprogram: ahbslv_write
 -- Description: Write data to slave memory. The input address is masked and
 -- only the valid bits are used. This means that the full AMBA
 -- address can be used and the caller does not have to subtract
 -- the bank start address.
 procedure ahbslv_write (
 constant address : in std_logic_vector(ADDR_R);
 constant data : in std_logic_vector;
 constant bank : in integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type);

 -- Subprogram: ahbslv_read
 -- Description: Read data from slave memory. The input address is masked and
 -- only the valid bits are used. This means that the full AMBA
 -- address can be used and the caller does not have to subtract
 -- the bank start address.
 procedure ahbslv_read (
 constant address : in std_logic_vector(ADDR_R);
 variable data : out std_logic_vector;
 constant bank : in integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type);

These functions are useful quickly initializing memory or to check the result of AMBA accesses
made to the slave without generating traffic on the AMBA AHB bus. The width of the vector assigned
to the data parameter determines the size of the access. The width of the address vector input must be
32 bits (31 downto 0).

A common use of AT_AHB_SLV is to specify special responses in order to test the behavior of AHB
masters in the system. Custom responses can be inserted with the ahbslv_response(..) procedure. This
procedure name is overloaded and variants with a different number of parameters exist. The most ver-
satile ahbslv_response(..) procedure is:
 procedure ahbslv_response (
 constant address_start : in std_logic_vector(ADDR_R);
 constant address_stop : in std_logic_vector(ADDR_R);
 constant bank : in integer;
 constant response : in std_logic_vector(1 downto 0);
 constant data : in std_logic_vector;
 constant master : in integer range 0 to NAHBMST-1;
GUIDE, Jan 2016, Version 1.5.0 28 www.cobham.com/gaisler

LEON/GRLIB Guide

 constant anymst : in boolean;
 variable id : out integer;
 signal dbgi : out at_slv_dbg_in_type;
 signal dbgo : in at_slv_dbg_out_type;
 constant ws : in integer := 0;
 constant repeat : in integer := 1;
 constant count : in integer := 1;
 constant splitcnt : in integer := 5;
 constant mem_access : in boolean := false;
 constant read_response : in boolean := true;
 constant write_response : in boolean := true;
 constant lock : in boolean := false;
 constant delay : in integer := 0;
 constant hprot : in std_logic_vector(3 downto 0);
 constant anyhprot : in boolean);

The parameters are documented in the grlib.at_ahb_slv_pkg package. Note that several parameters
have default values, this means that they do not have to be assigned when using the procedure. A
selection of available AT_AHB_SLV procedures are listed in table 12. All procedures are further doc-
umented in the grlib.at_ahb_slv_pkg package located at lib/grlib/atf/at_ahb_slv_pkg.vhd.

TABLE 12. Selection of AT_AHB_SLV procedures

Procedure name Description

ahbslv_response Inserts a customized response into the slaves response queue. If two
responses are inserted for the same address (range), the first response to be
inserted will be the first given. Several overloaded versions exist giving the
ability to, for instance, only replying to accesses from a specific master that
have a specific HPROT value. When a response is inserted, an unique iden-
tifier for that response is returned.

ahbslv_response_status Used to determine if a response with a specified identifier is in the slave’s
response queue.

ahbslv_response_remove Removes a response with a specified identifier from the slave’s response
queue.

ahbslv_response_clear Removes all queue responses in the slave or only for a specified bank.

ahbslv_response_unlock A response inserted with ahbslv_response(..) can be “locked” which means
that it will be valid for an unlimited number of accesses. This procedure can
be used to “unlock” the response, removing it from the slave.

ahbslv_waitforaccess This procedure will block until an access has been made to a specified
memory address.

ahbslv_waitforcomplete This procedure will block until a queued response has been triggered and
removed from the slave’s response queue.

ahbslv_setconfig Changes the default behavior of AHB slave model. Can be used to config-
ure wait states, random wait states, random RETRY and SPLIT responses,
etc.

ahbslv_getconfig Reads the current default behavior of the slave.

ahbslv_enable_split Enables SPLIT responses with a specified probability.

ahbslv_disable_split Disables SPLIT responses.

ahbslv_enable_retry Enables RETRY responses with a specified probability.

ahbslv_disable_retry Disables RETRY responses.

ahbslv_set_ws Sets the default number of wait states to be inserted by the slave.

ahbslv_get_ws Gets the default number of wait states inserted by the slave.
GUIDE, Jan 2016, Version 1.5.0 29 www.cobham.com/gaisler

LEON/GRLIB Guide
7.4 AT AHB Controller

7.4.1 Description

The AT AHB Controller (AT_AHB_CTRL) is an non-synthesizable AHB arbiter/controller. Com-
pared to the standard GRLIB AHBCTRL core, AT_AHB_CTRL supports early burst termination and
forced re-arbitration

7.4.2 Usage

In order to instantiate the controller, the following libraries should be included:
library ieee;
use ieee.std_logic_1164.all;
library grlib;
use grlib.amba.all;
use grlib.at_pkg.all;
The component for AT_AHB_CTRL has the following interface:
 component at_ahb_ctrl is
 generic (
 defmast : integer := 0; -- default master
 split : integer := 0; -- split support
 rrobin : integer := 0; -- round-robin arbitration
 timeout : integer range 0 to 255 := 0; -- HREADY timeout
 ioaddr : ahb_addr_type := 16#fff#; -- I/O area MSB address
 iomask : ahb_addr_type := 16#fff#; -- I/O area address mask
 cfgaddr : ahb_addr_type := 16#ff0#; -- config area MSB address
 cfgmask : ahb_addr_type := 16#ff0#; -- config area address mask
 nahbm : integer range 1 to NAHBMST := NAHBMST; -- number of masters
 nahbs : integer range 1 to NAHBSLV := NAHBSLV; -- number of slaves
 ioen : integer range 0 to 15 := 1; -- enable I/O area
 disirq : integer range 0 to 1 := 0; -- disable interrupt routing
 fixbrst : integer range 0 to 1 := 0; -- support fix-length bursts
 debug : integer range 0 to 2 := 2; -- report cores to console
 fpnpen : integer range 0 to 1 := 0; -- full PnP configuration decoding
 icheck : integer range 0 to 1 := 1;
 devid : integer := 0; -- unique device ID
 enbusmon : integer range 0 to 1 := 0; --enable bus monitor
 assertwarn : integer range 0 to 1 := 0; --enable assertions for warnings
 asserterr : integer range 0 to 1 := 0; --enable assertions for errors
 hmstdisable : integer := 0; --disable master checks
 hslvdisable : integer := 0; --disable slave checks
 arbdisable : integer := 0; --disable arbiter checks
 mprio : integer := 0; --master with highest priority
 mcheck : integer := 1; --check memory map for intersects
 enebterm : integer := 0; --enable early burst termination
 ebprob : integer := 10; --probability setting for of early bursttermination
 ccheck : integer range 0 to 1 := 1; --perform sanity checks on pnp config
 acdm : integer := 0 --AMBA compliant data muxing (for hsize > word)
);
 port (
 rst : in std_ulogic;
 clk : in std_ulogic;
 msti : out ahb_mst_in_type;
 msto : in ahb_mst_out_vector;
 slvi : out ahb_slv_in_type;
 slvo : in ahb_slv_out_vector;
 testen : in std_ulogic := '0';
 testrst : in std_ulogic := '1';
 scanen : in std_ulogic := '0';
 testoen : in std_ulogic := '1';
 doarb : in std_ulogic := '0'
);
 end component;

Most of the core’s VHDL generics are the same as for the AHBCTRL core. Two generics have been
added: enebterm and ebprob. When enebterm is set to a non-zero value the core may automatically
terminate burst accesses early. The normal GRLIB arbiter, AHBCTRL, does not interrupt a burst by
removing grant from a master. With enebterm /= 0 and ebprob set to 10 the probability of a burst
being interrupted by AT_AHB_CTRL is about 0.10 in each cycle.

Bursts may also be terminated early by assertion of the doarb input signal. When doarb is asserted,
the AHB arbiter will perform arbitration.

Use of AT_AHB_CTRL is primarily recommended when a core will be used in non-GRLIB systems.
The GRLIB arbiter will never interrupt a burst access and it is not a strict requirement that a core can
handle terminated bursts for the core to function in GRLIB.
GUIDE, Jan 2016, Version 1.5.0 30 www.cobham.com/gaisler

GUIDE, Jan 2016, Version 1.5.0 31 www.cobham.com/gaisler

LEON/GRLIB Guide

8 Support

Cobham Gaisler AB provides support via support@gaisler.com for customers with support contracts.
Limited free support is also provided by Cobham Gaisler engineers on the leon_sparc Yahoo! group
found at http://tech.groups.yahoo.com/group/leon_sparc/. This group also has a searchable archive.

http://tech.groups.yahoo.com/group/leon_sparc/

Cobham Gaisler AB
Kungsgatan 12
411 19 Göteborg
Sweden
www.cobham.com/gaisler
sales@gaisler.com
T: +46 31 7758650
F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Cobham or an authorized sales representative to verify that the information in
this document is current before using this product. Cobham does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to
in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a
license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham
or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for any
purpose, neither implicit nor explicit.

Copyright © 2016 Cobham Gaisler AB

GUIDE, Jan 2016, Version 1.5.0 32 of 32 www.cobham.com/gaisler

LEON/GRLIB Guide

	1 Introduction
	1.1 Overview
	1.2 Other Resources
	1.3 Licensing

	2 System Design Guidelines
	2.1 Introduction
	2.2 Minimal System
	2.3 Memory Map
	2.3.1 Overview
	2.3.2 Typical LEON/GRLIB Memory Map
	2.3.3 Memory Map in Systems That Need 2 GiB Memory Area
	2.3.4 AHB I/O Area and GRLIB Plug&Play Areas

	2.4 Interrupt Assignments
	2.4.1 Overview
	2.4.2 Linux 2.6
	2.4.3 RTEMS
	2.4.4 VxWorks

	2.5 Device Specific Identification

	3 LEON design information
	3.1 Introduction
	3.2 General Recommendations
	3.2.1 SPARC V9 CASA
	3.2.2 Data Cache Snooping
	3.2.3 V7 and FPU

	3.3 LEON Example Configurations
	3.3.1 Overview
	3.3.2 Minimal LEON Configuration
	3.3.3 General Purpose LEON Configuration
	3.3.4 High Performance LEON Configuration
	3.3.5 Configuration Settings For Existing LEON Devices

	3.4 LEON subsystem (gaisler.subsys.leon_dsu_stat_base)

	4 Multiple Buses, Clock Domains and Clock Gating
	4.1 Introduction
	4.2 Creating Multi-Bus Systems
	4.2.1 Overview
	4.2.2 GRLIB Facilities
	4.2.3 GRLIB AMBA Plug&Play in Multi-Bus Systems
	4.2.4 Buses in Different Clock Domains
	4.2.5 Single AHB Bus Example
	4.2.6 Multi-Bus System Example

	4.3 LEON3 Double-Clocking
	4.3.1 Overview
	4.3.2 LEON3-CLK2X Template Design
	4.3.3 Clocking
	4.3.4 Multicycle Paths
	4.3.5 Dynamic Clock Switching
	4.3.6 Configuration

	4.4 Clock gating
	4.4.1 Overview
	4.4.2 LEON clock gating

	5 Debug communication links
	5.1 Overview
	5.2 Available debug link controllers

	6 Core specific design recommendations
	6.1 Overview
	6.2 AHB/AHB Bridges (AHB2AHB/AHBBRIDGE/GRIOMMU)
	6.3 SVGA Controller (SVGACTRL)

	7 GRLIB AMBA Test Framework
	7.1 Overview
	7.2 AT AHB Master
	7.2.1 Description
	7.2.2 Initialization and Instantiation
	7.2.3 Simple Accesses

	7.3 AT AHB Slave
	7.3.1 Description
	7.3.2 Initialization and Instantiation
	7.3.3 Controlling AT_AHB_SLV

	7.4 AT AHB Controller
	7.4.1 Description
	7.4.2 Usage

	8 Support

