GRLIB IP Library

GRLIB VHDL IP Core Library

2016 User’'s Manual

The most important thing we build is trust

GRLIB IP Library User’'s Manual

Jan 2016, Version 1.5.0

GRLIB, Jan 2016, Version 1.5.0 www.cobham.com/gaisler

GRLIB IP Library

1

Lo L1 Tt A o] SRS OP PP 5
11 (ol o1 TPV RO VPR 5
1.2 OBNEE TESOUICES ...ttt ettt ettt b ettt ettt eb e ekt ekt ekt st ekt se e bt s e e b s b e b et et e eb et e st ebe s b et e nbebenbebennas 5
1.3 OVEIVIBW ...tttk st b et bttt he bbbt e b bt 14 eEem b e s b e R e eh b e b e e b £ b e e b e ekt ek e nb e b et e e ens e bt ebeanesbe s 5
14 LIDrary OFQANIZATIONcoueiuiieiie ettt ettt s et b et e e e e e e e e e neeneeneenas 5
1.5 L@ ol T TN oV SRSPSS 5
1.6 Distributed address AECOUINGcccviiiiieeie ittt sr et e e be s reesre e e sre e e e seeeneens 6
1.7 LT U] o] B C=T T oo [OOSR 6
1.8 e [0 P PN A o= VT o1 Y2 RSSO 6
1.9 017 o T 11 SRS 7
1.10 AVAIADIE TP COTES ...ttt sttt et et e st e e bt e be e ae e sbeeaeestesteesteeteesbesteebenreenes 7
1.11 R] 67T 4L OSSPSR 8
1.12 ot 013 [o SO PR 8
INSTATTALION......ciiiiie e s e et e e sa e et e e st e e e be e sbe e e b e e nbeeerneesreeaneas 9
2.1 TE S =L LT OO OO PRRT 9
2.2 L0 0T [o [T SRS SRR 9
2.3 DiIreCtOry OFGANTZATIONcui ittt ettt sttt b e e et e st et e e b e et e ebesbesb e s eneeseeneeneebenne e 9
2.4 [(O 0] = V0] €y TR o] oo o TSRS 10

241 LINUX ottt e e bbb e b bbb bt bbbttt re s 10

2.4.2 WINAOWS WIth CYQWIN......ciiiiicicicce st ae e e e e 10
2.5 Installation Of SIMUIALION HDFAMIES.......c.ciiiiiiii e e 11

2.5.1 Installation of AItera lIDrariescooooiiiiiiiiii e e 11

2.5.2 Installation of MicroSemi TIDFAries........cccuviiiiiiiiiice e e 11

2.5.3 Installation of XilinX [DFAriEs.......ccccoiiiiiiiiiiiee e e 12

2.5.4 Installation of DARE+ HHBIaries......cccooiiiiiiiiiicece e e 12
LEONS QUICK-STAI QUITEceiiiiiitiiieeseee et 13
3.1 LYo o (13 (o] o OSSOSO P PP PRTPOPRTRUPRPRTN 13
3.2 OVBIVIBW ...ttt bbb bttt h bkt h e e b e bt S4 e £Hea b e s b e e eh b e b e e b e b e eb e ek e bt nh e b et et et eneeneene e 13
3.3 CONFIGUIBLION. ...ttt bbb bbbt b et bbbt bbbt b et b 13
3.4 SIMUIALION ..ot b et b bbbt s bt s bt s b e st s b e st e b et et et b st sttt ne b 14
3.5 SYNheSiS and PIACEEIOULEecuieie ettt ste e sbe e e tesrae s teeseebeenee e 15
3.6 Simulation of Post-SYNthESIS NELHST...........coiiiiiiee e 16
3.7 BOard re-ProgramMiNgccccceeueruerueeeieesestesesestestestesaesseseesessessessessessessessessessensesessessessesessessenseseenes 16
3.8 RUNNINg applications ON tArQEL.........ccviiiiiiie ettt re et re e e reenee s 16
3.9 FIash PROM PrOGramMIMINGc..eiiueirieinieirieiniesesteese bbbttt b ettt bt 17
3.10 SOFEWAIE AEVEIOPMENT ... eieiee et e e e e s et e tesbesae e sae s eneereeneans 17
IMPIEMENTATION FIOW ...t ee e 19
4.1 INEFOTUCTION ..ottt ettt et et et e e ae et eebeeebesaeesbesteesbesbeebesbsenbesaeenteeaeebesnnesreas 19
4.2 Using Makefiles and generating SCHPLSciviveiiierieiisisie e sese et e ettt e e neenes 19
4.3 T aa L] Ao = o [=1] o o IS 21

A.3.1 OVEBIVIBW ...ttt ettt bt bbb bbb b b et e e st e Rt e bt e bt Rt e b e e bt b eae e e e e b e reere s 21

4.3.2 GRLIB_SIMULATOR environment variable. ... 21
4.4 SYNNESIS aN0 PIACEEIOULEeviiiieceee e ettt st see e e et e eneereene e 22
4.5 Skipping unused libraries, directories and fileS...........ccoveviriieie i 23
4.6 ot 01 =T I I SRS 25
4.7 TOOI-SPECITIC USAGE ...ttt bbbt bbbt b et b et eb bbb b s e enas 26

4.7.1 GNU VHDL (GHDL) ..eiiiieieeeetes ettt ettt st nee e enanreanenneas 26

4.7.2 CAOBNCE NCSIM .ottt ettt ettt b et ebe et e e be et e sbeebesbeebesbaesbesbeesbesbeenbesbeensestesneesrens 27

4.7.3 MENLOr FOMMAIPIO.....cuiciiiiiiic ettt sttt e s te et e e be et e sbeeebesbeesresbeeeens 28

4.7.4 MeNtor MOGEISIMocuiiiiiei ettt ettt be et e sbeeaeeebesbe e e 29

475 AIJEC ACLIVE-HDL ..ottt sttt ettt e et esbe e e besaeeare s 30

www.cobham.com/gaisler

GRLIB IP Library

A.7.6 ALJEC ALINT Lottt ettt e ettt b ettt s b e et e et s e sberennas 31

A.T7.7 ALJEC RIVIEIA coviiiiiiee ettt sttt b ettt b ettt eb et ebe e sbe s e 32

4.7.8 Synthesis With SYNPIITYcovcvieecce e ene s 33

4.7.9 Synthesis With MeNntor PrECISIONc.cvcieiiiiiieresiciee sttt sa e reeneeneas 34

4.7.10 ACEEI DESIGNET ..eevveieeeeieteete ettt s ettt st et e te s ae e et e e e e eneeseetesteateseesae e enseneas 35

A.7.01 ACLE] LIDEIO .ottt bbbttt et r e 36

4.7.02 AEIA QUANTUS ...cvieeriiteeeiecte ettt sttt et e sttt ebe et eebeeteesbesaeesbeetaesbestaesbesbsesbesaeentesbeeneesbeeeens 37

A.7.03 XIHINXISE ..ottt et bttt ettt sttt ettt se et et neete e 38

4714 XilINX PIANANCAU.......c.oiiiiiiieit ettt sttt sb e bt et e 40

4715 XIIINX VIVAO ..ottt bbbttt b et ebe e sbe e sbenennas 41

4716 LAttiCE ISP TOOIS ..c.ecviieiiieeie sttt bbbt eb e sbe e 42

4.7.17 Synthesis with Synopsys Design COMPIIETc.ccceviriereiiiieee s ene 43

4.7.18 Synthesis with Cadence RTL COMPIIEr ..o 43

4709 EASIC ETOONS ..ttt ettt et bbbt et nbe e aas 44

4.8 XGrlib graphical implementation tOO0]ccvoiiiiiiiii e e 45
A.8.1 INEFOTUCTION ...ttt bbb bbb ettt b e bt bbb b e e eneeneas 45

A.8.2 SIMUIALION ...ttt bbbttt et b e bbb sa e e e b e ebeene s 45

G T Y 011 1LY £ S SSSRS 46

A4.8.4 PIACE & ROULE ...ttt ettt bbbt bbb et n e ebeene s 46

4.8.5 AJAItIONAl TUNCLIONS........iiiiiiieiitiieie ettt bbb eneas 46

5 GRLIB DESIGN CONCEPL......cuvitieiteitisiesiesieeie ettt sttt sttt e et bbbt b ene e 47
5.1 LYoo (1 Tox o] o OO PP PR PRTRPPRPRN 47
5.2 AMBA AHB ON-ChiP DUS ..ottt sttt et e et e aneenesreennas 47
521 GBNEIAL ...t bbbt bbb bbb et 47

5.2.2 AHB MASIEr INTEITACEc.eouiiiiiiiiitiie et bbb e 48

5.2.3 AHB SIaVe INTEITACE ..ot e 49

5.2.4 AHB DUS CONTIOL ...ttt b et 50

525 AHB DBUS INAEX CONIOL ..ottt e e 50

5.2.6 Support for wide AHB data DUSES.........c.ccveiiiiiie ettt 50

5.3 AHB plug&play CONFIGUIALIONc.eiviiiiieiiiiice et 52
B.3.1 GBNEIAL....ueieeiiec ettt b e e b e et be b s be e e beertesre et e beenre e 52

5.3.2 DeViCe IdeNtifICAtIONcoiiiiie it s 53

5.3.3 AdAress JECOUINGciuetiriiierieteriee ettt bbbttt sbe e 54

5314 CaChEaDIIILY ...oveviieiiiieeiee e 55

5.35 INTEITUPL STEEIING ..veiiteeeie ettt e ettt sb ettt 55

5.4 AMBA APB ON-ChiP BUS ..ottt ettt e s ne st st saesae e saenenseneas 57
5L GBNEIAL....eiiiieiicie e bbb b ettt bbb 57

542 APB SIaVE INEEITACE.....c.iiiiice e 58

5.4.3 AHB/APB DIIAGE . .cve ettt sttt 59

544 APB BUS INAEX CONLIOL . ..ottt st 59

5.5 APB plug&play CONFIQUIALION........cciiiiciecicce st sttt et e s e sreeneennas 60
551 GBNEIAL ... bbb bbb bbbt e et 60

552 DeVvice IdentifiCatiONccooiiiiiiie e 60

TR TG T Vo [0 =TT o s Toto o [T S 60

5.5.4 INTEITUPL STEEIING ..cuveiiieiieciee ettt e et e s te e s e st e et e s be e s e sae e e e seesreenee e 61

5.6 GRLIB cONfigUration PACKAGEc.eiveieieeierieie ittt st 61
5.7 LT a0 (o7)Y AT o] o[o[RS 63
5710 GBNEIAL ...t e bbbt b ettt ettt 63

T O |V, 1= o 0T VA o] (o Tod <SS 64

oI S T = To OO OO 64

5.8 S ToF: LI (=T AU o] o Lo S PP P PR 65
581 OVEIVIBW .ttt ettt bt bbbt bbb e h et e bt ekt bt bt e bbbt ne e e ne e 65

IR I A €1 2 I 1 S R TH o] o [o] ¢ TR RSP 66

5.8.3 USAQE FOr EXISING COMBS.....ciuiiieiiieieiicieste ettt st e st e st e et e sbe s e e sbe e e sresreenee s 66

RS A U LT o[- {0 g 4 ATV ol o] -1 S 66

5.85 Configuration OPLIONScccviiieiiiiiciece et sb e e sre s sre e sre e enee s 66

www.cobham.com/gaisler

GRLIB IP Library

5.9 Support for integrating MeMOrY BISTcociiiiiiciie et 67
5.9.1 SYNCIAM IBVEL... .o et a e 67

5.9.2 TP COMB IBVEL ..ottt ettt 67

TR T T TSy T o T (L RSP 68

6 GRLIB DESIgN EXAMPIEScvvieieie ettt et ettt e e be et e ne e sreeaneas 69
6.1 a1 g0 o [0To1 1 To] o ISP TP STOURPRRS 69
6.2 LEONSBIMP....et ettt bbb bbbt bt b etk et b ke h et n ke n ks bRttt e ne s 69
6.3 LEONSBASIC ...ttt ettt et ekttt sttt b et bbbt bRt Rt b st n bRttt b 70
6.3.1 Modification 0f GRLIB SCHPLSc.ecviiiiiiie s 71

6.3.2 RTL SIMUIALION SCIIPLS ..eveeviiieieiteciect et e ettt st e este e e sresra s 71

T G TV 14 T= T Yo] o] £ S 72

6.3.4 FOrmal VErifCation SCHPLScivveiiii ettt sttt 72

T T € I I [[0 Fo U o g IEod] o S 72

6.4 Xilinx Dynamic Partial Reconfiguration EXamMPIEScocoiiiiiiiiiininise e 73
7 GRLIB FPGA board template deSIgNS........ccveiuiiieiieieiie ittt 75
7.1 INEFOQUCTION ...ttt b bbbkt b bbbt s et e b e bt b e b nbe b e ne e ens 75
7.2 SUPPOITEA FPGA DOAIUS ...ttt ettt b ettt e e et e bt e beanesbe b et e e e e e 75
8 USING NELIISES ...ttt te e e s b e et e e re e teeeeaneenre e 77
8.1 INEFOQUCTION ..ot et b bbbkt b bbbt s e bbbt b et sbe bt e e 77
8.2 MEPPEA WHDLL ...ttt bbb bbbt b et b bbbt e et 77
8.3 XIINX NELHSE FHIES ..ottt et sttt sttt 77
8.4 AALEIA NMETHISTS. ..o ittt st e e s te e et e et e e saeeeabeesbeesabeesbeesbeesreeebeestbeenbeesrbeans 77
8.5 KNOWN TIMITALIONS ...ttt ettt ettt e be e be e e sbe e te e s beeseesbesbeenbesbsetesaeeanas 77
9 EXIENAING GRLIB ..ottt e e te e ane e re e 79
9.1 INEFOQUCTION ..ot et b bbbkt b bbbt s e bbbt b et sbe bt e e 79
9.2 GRLIB OFANISALION ...ttt b bbbt bbbt bbbttt nb e 79
0.2.1 ENCIYPLEA RTL ootttk sttt st 80

9.3 Adding an AMBAIP COre t0 GRLIBccoiiiic e s eneas 80
9.3.1 Example of adding an existing AMBA AHB slave IP COrecccovvvveinienvicse e, 80

9.3.2 AHB Plug&play CONFIQUIALIONc.eiveiiieicie sttt 81

9.3.3 Example of creating an APB SIaVe 1P COTEcovviviiiiie e ene 83

9.3.4 APB plug&play CONFIQUIAtIONcc.coveieiciciic ettt 84

9.4 Adding @ design 10 GRLIBcciiiiee ettt ste e te et e ta et e sneenesneennas 84
D141 OVEIVIBW ..ottt ettt ettt et e e et e e st e e abe e sbe e s abe e abaestbe e baesaeessbeeabeesabeesbaesnteebeesbeesaneeteas 84

9.4.2 Example: Adding a template design fOr NeXYS4........ccciviiiieieeie i 85

9.5 USING VEITIOG COUR.....c.eiuiiiiiieciieet bbb bbbttt b 90
9.6 Adding portabilty support for new target teChNOIOGIES.........cccviveieierieieee e 91
0.8.1 GBNEIAL.....eiiiieiieee et b e bbbt b ettt bbb 91

9.6.2 Adding a NEW tECANOIOQYc.vevevieiiieciieiiie ettt se e 91

0.6.3 ENCAPSUIALIONoviieic ettt ettt n e a et ne e e 92

0.8.4 IMIBIMIONIES ...ttt ettt ettt stttk st b st e bbbt e b s e et e st e nb et et et ne et 92

0.8.5 PAOS ...ttt e E R e b bRt bbbt b ettt b 93

TG T G O1 [o 1o Qo[- 1T - 0 £ SRS 94

9.7 Extending the xconfig GUI configuration.............ccooviiiieii i 94
0.7 1 INEFOUUCTION .. bbbt ettt b bbb bbbt e 94

S | ot (et) o i 1 =TS 94

o T (oo o1 110 0 1= (VI 1TSS 95

9.7.4 Adding NEW XCONFIQ BNEIIES ...vveiiieiieiice ettt sae e 96

9.7.5 Other uses and lMITAtIONS..........ccuiiiiiiiire bbb e 98

www.cobham.com/gaisler

GRLIB IP Library

1
11

1.2

1.3

1.4

1.5

Introduction
Scope

This document describes the GRLIB IP library infrastructure, organization, tool support and on-chip
bus implementation.

Other resources

There are several documents that together describe the GRLIB IP Library and Cobham Gaisler’s IP

cores:

* GRLIB IP Core User’s Manual (grip.pdf) - Describes specific IP cores provided with the GRLIB
IP library. Also specifies which cores that are included in each type of GRLIB distribution.

e GRLIB-FT User’s Manual (grlib-ft.pdf) - Describes the FT and FT-FPGA versions of the GRLIB
IP library. The document is an addendum to the GRLIB IP Library User’s Manual. This docu-
ment is only available in the FT and FT-FPGA distributions of GRLIB.

* GRLIB FT-FPGA Xilinx Add-on User’s Manual (grlib-ft-fpga-xilinx.pdf) - Describes function-
ality of the Virtex5-QV and Xilinx TMRTool add-on package to the FT-FPGA version of the
GRLIP IP library. The document should be read as an addendum to the ‘GRLIB IP Library
User’s Manual’ and to the GRLIB FT-FPGA User’s Manual. This document is only available as
part of the add-on package for FT-FPGA.

 LEON/GRLIB Configuration and Development Guide (guide.pdf) - This configuration and
development guide is intended to aid designers when developing systems based on LEON/
GRLIB. The guide complements the GRLIB IP Library User’s Manual and the GRLIB IP Core
User’s Manual. While the IP Library user’s manual is suited for RTL designs and the IP Core
user’s manual is suited for instantiation and usage of specific cores, this guide aims to help
designers make decisions in the specification stage.

Overview

The GRLIB IP Library is an integrated set of reusable IP cores, designed for system-on-chip (SOC)
development. The IP cores are centered around a common on-chip bus, and use a coherent method for
simulation and synthesis. The library is vendor independent, with support for different CAD tools and
target technologies. A unique plug&play method is used to configure and connect the IP cores with-
out the need to modify any global resources.

Library organization

GRLIB is organized around VHDL libraries, where each major IP (or IP vendor) is assigned a unique
library name. Using separate libraries avoids name clashes between IP cores and hides unnecessary
implementation details from the end user. Each VHDL library typically contains a number of pack-
ages, declaring the exported IP cores and their interface types. Simulation and synthesis scripts are
created automatically by a global makefile. Adding and removing of libraries and packages can be
made without modifying any global files, ensuring that modification of one vendor’s library will not
affect other vendors. A few global libraries are provided to define shared data structures and utility
functions.

GRLIB provides automatic script generators for the Modelsim, Ncsim, Aldec, Sonata and GHDL
simulators, and the Synopsys, Synplify, Cadence, Mentor, Actel, Altera, Lattice, eASIC and Xilinx
implementation tools. Support for other CAD tools can be easily be added.

On-chip bus

The GRLIB is designed to be ‘bus-centric’, i.e. it is assumed that most of the IP cores will be con-
nected through an on-chip bus. The AMBA-2.0 AHB/APB bus has been selected as the common on-
chip bus, due to its market dominance (ARM processors) and because it is well documented and can
be used for free without license restrictions. The figure below shows an example of a LEON3 system
designed with GRLIB:

www.cobham.com/gaisler

GRLIB IP Library

1.6

1.7

1.8

USB PHY RS232 JTAG PHY LvDS CAN PCI

LEON3 Template Design

___________ [- — - — = = = - — — ~
| v |
| Serial JTAG Ethernet Spacewire CAN 2.0 PCI |

LEON3 usse Dbg Link | | Dbg Link MAC Link Link
| Processor |
| AMBA AHB ‘ ‘ |
| AMBAAPB |
AHB Memory AHB/APB I I I I I I

| Controller Controller Bridge |
| PS/2 UART Timers IrqCtrl 1/O port |

Lo- - - - X . . - - F - J - - - - 1T — -
8/32-bits memory busl <I T I
1 1 | 1

PROM /O SRAM SDRAM Vldeo PS/2 IF RS232 WDOG 32-bit I/O port

Distributed address decoding

Adding an IP core to the AHB bus is unfortunately not as straight-forward as just connecting the bus
signals. The address decoding of AHB is centralized, and a shared address decoder and bus multi-
plexer must be modified each time an IP core is added or removed. To avoid dependencies on a global
resource, distributed address decoding has been added to the GRLIB cores and AMBA AHB/APB
controllers.

Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals to the AHB and
APB buses. An AMBA module can drive any of the interrupts, and the unit that implements the inter-
rupt controller can monitor the combined interrupt vector and generate the appropriate processor
interrupt. In this way, interrupts can be generated regardless of which processor or interrupt controller
is being used in the system, and does not need to be explicitly routed to a global resource. The scheme
allows interrupts to be shared by several cores and resolved by software.

Plug&Play capability

A broad interpretation of the term ‘plug&play’ is the capability to detect the system hardware config-
uration through software. Such capability makes it possible to use software application or operating
systems which automatically configure themselves to match the underlying hardware. This greatly
simplifies the development of software applications, since they do not need to be customized for each
particular hardware configuration.

In GRLIB, the plug&play information consists of three items: a unique IP core 1D, AHB/APB mem-
ory mapping, and used interrupt vector. This information is sent as a constant vector to the bus arbiter/
decoder, where it is mapped on a small read-only area in the top of the address space. Any AHB mas-
ter can read the system configuration using standard bus cycles, and a plug&play operating system
can be supported.

To provide the plug&play information from the AMBA units in a harmonized way, a configuration
record for AMBA devices has been defined (figure 1). The configuration record consists of 8 32-bit
words, where four contain configuration words defining the core type and interrupt routing, and four
contain so called ‘bank address registers’ (BAR), defining the memory mapping.

www.cobham.com/gaisler

GRLIB IP Library

1.9

1.10

31 24 23 121110 9 5 4 0

VENDOR ID DEVICE ID CT VERSION IRQ

Configuration word

31 20 19 16 15 4 3 0

ADDR C/P MASK TYPE

Bank address register (BAR)

Figure 1. AMBA configuration record

The configuration word for each device includes a vendor 1D, device ID, version number, and inter-
rupt routing information. A configuration type indicator is provided to allow for future evolvement of
the configuration word. The BARs contain the start address for an area allocated to the device, a mask
defining the size of the area, information whether the area is cacheable or pre-fetchable, and a type
declaration identifying the area as an AHB memory bank, AHB I/O bank or APB 1/O bank. The con-
figuration record can contain up to four BARs and the core can thus be mapped on up to four distinct
address areas.

Portability

GRLIB is designed to be technology independent, and easily implemented on both ASIC and FPGA
technologies. Portability support is provided for components such as single-port RAM, two-port
RAM, dual-port RAM, single-port ROM, clock generators and pads. The portability is implemented
by means of virtual components with a VHDL generic to select the target technology. In the architec-
ture of the component, VHDL generate statements are used to instantiate the corresponding macro
cell from the selected technology library. For RAM cells, generics are also used to specify the address
and data widths, and the number of ports.

Available IP cores

Please see the GRLIB IP Core User’s Manual (GRIP, grip.pdf) for a list of IP cores included in the
library.

www.cobham.com/gaisler

GRLIB IP Library

111

1.12

\Versions

A GRLIB release is identified by the name grib-type-x.y.z-bbuildid. The fields have the following
meaning:

type - This describes the type of GRLIB distribution. The main types are com, ft-fpga, gpl and ft. The
different distributions contain a different basic set of IP cores. The FT distributions contain support
for enabling fault-tolerance features.

X.y.z - This is a version number intended that is incremented depending on the number of new features
in a relase. Each field is treated separately as a decimal number. This means that version 1.2.10 is
more recent than version 1.2.9.

buildid - This is the main identifier for the version of the IP cores. The build ID is incremented when-
ever a new GRLIB release is made that has changes to the IP cores. The build ID is also included in
the system’s plug&play information. The build ID may be used by software drivers to detect presence
of features or to implement workarounds and should not be changed.

As described in section 1.8, the Plug&Play information also contains a version field for each IP core.
This version field is typically updated when there are changes to the register interface or new features
added. This is intended as an aid to software drivers. The main identifier for IP core version is the
library build ID.

Licensing

The main infra-structure of GRLIB is released in open-source under the GNU GPL license. This
means that designs based on the GPL version of GRLIB must be distributed in full source code under
the same license. For commercial applications where source-code distribution is not desirable or pos-
sible, Cobham Gaisler offers low-cost commercial IP licenses. Contact sales@gaisler.com for more
information or visit http://www.gaisler.com/.

www.cobham.com/gaisler

http://www.gaisler.com/
http://www.gaisler.com/
http://www.gaisler.com/

GRLIB IP Library

2
2.1

2.2

2.3

Installation

Installation

GRLIB is distributed as a gzipped tar-file and can be installed in any location on the host system:
gunzip -c grlib-com-1.5.0-bxxxx.tar.gz | tar xf -

or
tar xvf grlib-com-1.5.0-bxxxx.tar.gz

NOTE: Do NOT use WinZip on the .tar.gz file, this will corrupt the files during extraction!

The distribution has the following file hierarchy:

bin various scripts and tool support Ffiles
boards support files for FPGA prototyping boards
designs template designs

doc documentation

lib VHDL libraries

netlists Vendor specific mapped netlists

software software utilities and test benches
verification test benches

GRLIB uses the GNU “make’ utility to generate scripts and to compile and synthesis designs. It must
therefore be installed on a unix system or in a ‘unix-like’ environment. Tested hosts systems are
Linux and Windows with Cygwin.

Upgrading
When migrating from earlier GRLIB releases the steps below should be followed in order to mini-

mize the number of possible conflicts when upgrading:

*The new package should be extracted in its own directory. Do not overwrite the existing GRLIB tree with
the new package.

= Added designs and IP cores should be copied into the new tree.

= All existing scripts (file lists) should be removed and then re-generated using the appropriate make targets
in the new GRLIB tree.

*The Changelog (available in the doc/ directory) of the new library should be studied. Check for new fea-
tures or VHDL generics that have been deprecated compared to the previous version that was used.

Directory organization

GRLIB is organized around VHDL libraries, where each IP vendor is assigned a unique library name.
Each vendor is also assigned a unique subdirectory under grlib/lib in which all vendor-specific source
files and scripts are contained. The vendor-specific directory can contain subdirectories, to allow for
further partitioning between IP cores etc.

The basic directories delivered with GRLIB under grlib-1.x.y/lib are:

grlib packages with common data types and functions

gaisler Cobham Gaisler’s components and utilities

tech/* target technology libraries for gate level simulation
techmap wrappers for technology mapping of marco cells (RAM, pads)
work components and packages in the VHDL work library

Other vendor-specific directories are also delivered with GRLIB, but are not necessary for the under-
standing of the design concept. Libraries and IP cores are described in detail in separate documenta-
tion. Many of the tech/* directories are populated by performing simulation library installation. This
is described in section 2.5.

www.cobham.com/gaisler

GRLIB IP Library

2.4

Host platform support

GRLIB is design to work with a large variety of hosts. The paragraphs below outline the hosts tested
by Cobham Gaisler. Other unix-based hosts are likely to work but are not tested. As a baseline, the
following host software must be installed for the GRLIB configuration scripts to work:

*Bash shell

*GNU make

*GCC

*Tcl/Tk-8.4

*patch utility

X Windows graphical system (required for Tcl/Tk on Cygwin and Linux)

2.4.1 Linux

The make utility and associated scripts should work on most linux distribution. GRLIB is primarily
developed on Linux hosts, and GNU/Linux is the preferred platform.

2.4.2 Windows with Cygwin

The make utility and associated scripts will work, although somewhat slow. Note that GCC and the
make utility must be selected during the Cygwin installation. Cygwin troubleshooting:

= Some versions of Cygwin are known to fail due to a broken ‘make’ utility. In this case, try to use
a different version of Cygwin or update to a newer make.

=Make sure that the paths to tools are set-up properly. For instance, for Xilinx ISE tools the XILINX
environment variable must point at the installation of ISE. This can be checked in the Cygwin shell
by typing echo $XILINX, which should lead to a print-out matching the Xilinx ISE installation.
Example: c:\Xilinx\13.2\ISE_DS\ISE (path depends on ISE version and selected installation point)
can be set from the Cygwin shell with the command:

export XILINX=c:\\Xilinx\\13.2\ISE_DSW\ISE

=Paths to the EDA tools must be included in the PATH variable. It must be possible to invoke the
tools by ussing their command on the Cygwin command line. For Xilinx tools, this can be tested by
issuing a command such as par, which should result in the help text for Xilinx’s place&route tool to
be printed. If this does not work then the PATH variable must be set. Examples:

export PATH=$PATH:$XILINX/bin/nt

or
export PATH=$PATH:/cygdrive/Xilinx/13.2/ISE_DS/ISE/bin/nt

=In order to run the graphical configuration tools that come with GRLIB you may also need to
install an X server (xorg-server, xinit packages in X11 category). Another option is to install Tcl/Tk
packages from another provider, such as ActiveState.

=\With Cygwin’s X server installed, the server should be started via the start menus’s Cygwin-X >
XWin Server. With the default setting this will bring up a terminal window with the proper initializa-
tion of the DISPLAY variable. In other terminal windows, the DISPLAY variable can be set with
export DISPLAY=:0.

= In case make xcqnfi? fails, try removing the file Iconfig.tk from the template design directory.
Then issue make distclean followed by make xconfig.

= Itis recommended to extract the GRLIB file tree in your Cygwin user’s home directory. Other-
wise files may be generated in the wrong format (binary vs. text). See http://cygwin.com/cygwin-
ug-net/using-textbinary.html for additional information.

= Tools, such as ModelSim, may generate Makefiles that contain paths with the character “:” in
them. This will then lead to build failures. The GRLIB scripts attempt to detect and patch the gener-
ated Makefiles to avoid these failures. If you encounter errors such as “*** No rule to make target
..”” then please send the file make.work from the template design directory together with the error
output tods)upport@gaisler.com. (NOTE: generating scripts under MSYS may not work and is NOT
supported).

=For error errors involving fork, please see http://cygwin.com/fag-nochunks.html#faq.using.fixing-
fork-failures.

=Cygwin sets the TZ variable. This variable must be set so that it corresponds to the timezone used
t%y()ur license server. Otherwise you may experience problems with software such as Synplify.
e issue can be resolved by issuing the command unset TZ.

www.cobham.com/gaisler

http://cygwin.com/cygwin-ug-net/using-textbinary.html
http://cygwin.com/cygwin-ug-net/using-textbinary.html
http://cygwin.com/faq-nochunks.html#faq.using.fixing-fork-failures
http://cygwin.com/faq-nochunks.html#faq.using.fixing-fork-failures

GRLIB IP Library

2.5

Installation of simulation libraries

Simulation libraries need to be installed to allow simulation of most template designs included in
GRLIB. The simulation libraries are typically copied from the vendor EDA tool installation into
GRLIB and can then be used with all the simulation tools. Some designs instead rely on prebuilt
libraries, in this case it is documented in the design’s README.txt file.

The descriptions in the subsections below install the simulation libraries globally for GRLIB. The
steps only have to be performed once and it will apply to all designs. The commands described below
can be performed from the root of the GRLIB tree if the variable $GRLIB has been set to point to the
GRLIB base. Example:

export GRLIB=/home/user/grlib-com-1.5.0-b4161
The commands can also be executed from within any template design directory under designs/.

2.5.1 Installation of Altera libraries

Altera libraries are copied from a Quartus Il installation. The variable $QUARTUS_ROOTDIR
needs to be set (note that it needs to include the quartus installation directory). Example:

export QUARTUS_ROOTDIR=/usr/local/altera/quartus13.1/quartus/
The Altera libraries are then installed with the command: make install-altera

Later version of Quartus may have discontinued support for some devices and the corresponding sim-
ulation libraries are then missing. This is reported by the installation script. For example, using Quar-
tus 11 13.1 the result will be:

bash-4.1$ make install-altera

installing tech/altera

installing tech/altera_mf

installing tech/cycloneiii

skipping tech/stratixii - not supported by Quartus 1l version

installing tech/stratixii
Altera library installation completed.

Using Quartus 11 14.1 the result will be:

bash-4.1$% make install-altera

installing tech/altera

installing tech/altera _mf

skipping tech/cycloneiii - not supported by Quartus 1l version
skipping tech/stratixii - not supported by Quartus 1l version
skipping tech/stratixiii - not supported by Quartus Il version
Altera library installation completed.

2.5.2 Installation of Microsemi libraries

Note: The GPL version of GRLIB does not support Microsemi devices.

Note: If you are targeting RTG4 then the GRLIB RTG4 add-on package should be installed before
performing the steps below. Otherwise the install command has to be re-run after the add-on package
has been extracted into the GRLIB tree.

Microsemi libraries are copied from a Libero IDE or Libero SoC installation. The variable
$LIBERO_ROOTDIR needs to be set. Example:

export LIBERO_ROOTDIR=/usr/local/actel/Libero_v11.6

or (on Windows/Cygwin):

export LIBERO_ROOTDIR=/cygdrive/c/Micosemi/Libero_v11.6

The Microsemi libraries are then installed with the command: make install-microsemi

Libero SoC cannot be used for AX and RTAX devices. If the installation is performed with Libero
SoC then it is expected that some Libraries are skipped. The same applies for Libero IDE that does
not support new technologies.

The make install-microsemi command installs both source and pre-compiled versions of the simula-
tion libraries. The source versions are patched when installed.

www.cobham.com/gaisler

GRLIB IP Library

2.5.3 Installation of Xilinx libraries

The base set of Xilinx libraries are taken from a Xilinx ISE installation. The variable $XILINX needs
to be set like it is from the ISE initialisation scripts. Example:

export XILINX=/usr/local/xilinx/14.7/ISE_DS/ISE

The UNISIM libraries are then installed with the command: make install-unisim

2.5.4 Installation of DARE+ libraries

Note: Only the FT versions of GRLIB support the DARE+ library.

DARE+ ASIC libraries version 5.x are copied from a DARE+ ASIC installation. The variable
$DARE_ROOTDIR needs to be set. Example:

export DARE_ROOTDIR=/usr/local/dare/DesignKit_V5.5
The DARE-+ libraries are then installed with the command: make install-dare

For DARE+ library simulation models to be included in the simulation the make install-dare needs
to be performed before simulation scripts are created.

www.cobham.com/gaisler

GRLIB IP Library

3
3.1

3.2

3.3

LEONS3 quick-start guide

Introduction

This chapter will provide a simple quick-start guide on how to implement a LEON3 system using
GRLIB, and how to download and run software on the target system. Refer to chapters 4 - 8 for a
deeper understanding of the GRLIB organization.

Overview

Implementing a leon3 system is typically done using one of the template designs on the designs direc-
tory. For this tutorial, we will use the LEON3 template design for the GR-XC3S-1500 board. Imple-
mentation is typically done in three basic steps:

* Configuration of the design using xconfig

* Simulation of design and test bench

* Synthesis and place&route

The template design is located in designs/leon3-gr-xc3s-1500, and is based on three files:

* config.vhd - a VHDL package containing design configuration parameters. Automatically generated by the
xconfig GUI tool.

* [eon3mp.vhd - contains the top level entity and instantiates all on-chip IP cores. It uses config.vhd to config-
ure the instantiated IP cores.

* testbench.vhd - test bench with external memory, emulating the GR-XC3S-1500 board.

Each core in the template design is configurable using VHDL generics. The value of these generics is
assigned from the constants declared in config.vhd, created with the xconfig GUI tool.

LEON3 GR-XC3S-1500 Template Design

USB PHY RS232 JTAG PHY LVDS CAN

F——— - = = = — |- - — [- -] - - = = =
| Serial JTAG Ethernet Spacewire CAN 2.0

LEON3 usB Dbg Link | | Dbg Link MAC Link Link
| Processor
| AMBA AHB ‘ ‘
| AMBAAPB

AHB Memory AHB/APB I I I I I |

| Controller Controller Bridge
| PS/2 UART Timers IrqCtrl 1/O port

8/32-bits memory bus

PROM

1/0

SDRAM

Configuration

Video
DAC

L e

PS/2 IF RS232 WDOG

16-bit 1/0 port

Change directory to designs/leon3-gr-xc3s-1500, and issue the command ‘make xconfig’ in a bash
shell (linux) or cygwin shell (windows). This will launch the xconfig GUI tool that can be used to
modify the leon3 template design. When the configuration is saved and xconfig is exited, the con-
fig.vhd is automatically updated with the selected configuration.

www.cobham.com/gaisler

GRLIB IP Library

3.4

Simulation

The template design can be simulated in a test bench that emulates the prototype board. The test
bench includes external PROM and SDRAM which are pre-loaded with a test program. The test pro-
gram will execute on the LEON3 processor, and tests various functionality in the design. The test pro-
gram will print diagnostics on the simulator console during the execution.

The following command should be give to compile and simulate the template design and test bench
using Mentor ModelSim/QuestaSim or Aldec Riviera-PRO (simulator is selected based in the
GRLIB_SIMULATOR environment variable, default is ModelSim):

make sim
make sim-launch

Make targets also exist for other simulators. See documentation of tools in this document or issue
make help to view a list of available targets.

Some designs require that the environment variable GRLIB_SIMULATOR is set to the simulator to
use in order for all parts of the design to be built correctly (in particular template designs for Xilinx
devices that make use of the Xilinx MIG). Refer to the design’s README.txt file and section 4.3 of
this document for additional information.

A typical simulation log can be seen below.

$ make sim-run

VSIM 1> run -a

LEON3 GR-XC3S-1500 Demonstration design

GRLIB Version 1.0.15, build 2183

Target technology: spartan3 , memory library: spartan3

ahbctrl: AHB arbiter/multiplexer rev 1

ahbctrl: Common 1/0 area disabled

ahbctrl: AHB masters: 4, AHB slaves: 8

ahbctrl: Configuration area at OxFFfff000, 4 kbyte

ahbctrl: mstO: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mstl: Gaisler Research JTAG Debug Link

ahbctrl: mst2: Gaisler Research SpaceWire Serial Link

ahbctrl: mst3: Gaisler Research SpaceWire Serial Link

ahbctrl: slvO0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte

ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slvl: Gaisler Research AHB/APB Bridge

ahbctrl: memory at 0x80000000, size 1 Mbyte

ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte

apbctrl: APB Bridge at 0x80000000 rev 1

apbctrl: slvO0: European Space Agency Leon2 Memory Controller
apbctrl: 1/0 ports at 0x80000000, size 256 byte

apbctrl: slvl: Gaisler Research Generic UART

apbctrl: 1/0 ports at 0x80000100, size 256 byte

apbctrl: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbctrl: 1/0 ports at 0x80000200, size 256 byte

apbctrl: slv3: Gaisler Research Modular Timer Unit

apbctrl: 1/0 ports at 0x80000300, size 256 byte

apbctrl: slv8: Gaisler Research General Purpose 1/0 port
apbctrl: 1/0 ports at 0x80000800, size 256 byte

apbctrl: slvl2: Gaisler Research SpaceWire Serial Link

apbctrl: 1/0 ports at 0x80000c00, size 256 byte

apbctrl: slv13: Gaisler Research SpaceWire Serial Link

apbctrl: 1/0 ports at 0x80000d00, size 256 byte

grspwl3: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11
grspwl2: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10
grgpio8: 18-bit GPIO Unit rev O

gptimer3: GR Timer Unit rev 0, 8-bit scaler, 2 32-bit timers, irq 8
irgmp: Multi-processor Interrupt Controller rev 3, #cpu 1

apbuartl: Generic UART rev 1, fifo 1, irq 2

ahbjtag AHB Debug JTAG rev O

dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes

HHHFPHFEHFHRHFFHFEFRFHFRHFFHRHFRFTFEFRFEFFRHRFTEHRRFTEHRFRF TR

www.cobham.com/gaisler

GRLIB IP Library

3.5

leon3_0: LEON3 SPARC V8 processor rev 0O

leon3_0: icache 1*8 kbyte, dcache 1*4 kbyte

clkgen_spartan3e: spartan3/e sdram/pci clock generator, version 1
clkgen_spartan3e: Frequency 50000 KHz, DCM divisor 4/5

**** GRLIB system test starting ****
Leon3 SPARC V8 Processor
CPU#0 register file
CPU#0 multiplier
CPU#0 radix-2 divider
CPU#0 floating-point unit
CPU#0 cache system
Multi-processor Interrupt Ctrl.
Generic UART
Modular Timer Unit
timer 1
timer 2
chain mode
Test passed, halting with IU error mode
** Failure: *** IU in error mode, simulation halted ***
Time: 1104788 ns Iteration: O Process: /testbench/iuerr File: testbench.vhd
Stopped at testbench.vhd line 338
SIM 2>

< HTHRHFHHHFHFFHFHRHFHFHFEHREFHHHER

The test program executed by the test bench consists of two parts, a simple PROM boot loader
(prom.S) and the test program itself (systest.c). Both parts can be re-compiled using the make soft
command. This requires that the BCC tool-chain is installed on the host computer. The BCC tool-
chain by default includes AMBA plug&play scanning routines that are able to scan over AHB
bridges. This is seldom required for system tests and simulation time is decreased by the default
assignment of the environment variable LDFLAGS to LDFLAGS=-gnoambapp. The default assign-
ment can be avoided by defining the LDFLAGS variable.

The simple PROM boot loader (prom.S) contains code to initialize the processor, memory controller
and other peripherals. If the file prom.S is missing from the template design folder then a default ver-
sion located at software/leon3/prom.S will be used. Configuration constants used by prom.S are
located in the file prom.h. If the memory controller in a design is changed, or the base address of main
memory is moved, then prom.h and possibly prom.S may need to be updated to correctly initialize the
new configuration. If prom.h or prom.S are modified then make soft is required before the changes
take effect.

Note that the simulation is terminated by generating a VHDL failure, which is the only way of stop-
ping the simulation from inside the model. An error message is then printed:

Test passed, halting with IU error mode

** Failure: *** IU in error mode, simulation halted ***

Time: 1104788 ns Iteration: O Process: /testbench/iuerr File: testbench.vhd
Stopped at testbench.vhd line 338

This error can be ignored.
Synthesis and place&route

The template design can be synthesized with either Synplify, Precision or ISE/XST. Synthesis can be
done in batch or interactively. To use synplify in batch mode, use the command:

make synplify

To use synplify interactively, use:
make synplify-launch

The corresponding command for ISE are:

make ise-map
and

make ise-launch

To perform place&route for a netlist generated with synplify, use:

make ise-synp

www.cobham.com/gaisler

GRLIB IP Library

3.6

3.7

3.8

For a netlist generated with XST, use:

make ise

In both cases, the final programming file will be called ‘leon3mp.bit’. See the GRLIB User’s Manual
chapter 3 for details on simulation and synthesis script files.

Simulation of post-synthesis netlist

If desired, it is possible to simulate the synthesized netlist in the test bench. The synplify synthesis
tool generates a VHDL netlist in the file synplify/leon3mp.vhm. To re-run the test bench with the net-
list, do as follows:

vcom synplify/leon3mp.vhm
vsim -c testbench
vsim> run -all

Board re-programming

The GR-XC3S-1500 FPGA configuration PROMs can be programmed from the shell window with
the following command:

make ise-prog-prom
For interactive programming, use Xilinx Impact software. See the GR-XC3S-1500 Manual for details
on which configuration PROMs to specify.

A pre-compiled FPGA bit file is provided in the bitfiles directory, and the board can be re-pro-
grammed with this bit file using:

make ise-prog-prom-ref
Running applications on target

To download and debug applications on the target board, the GRMON debug monitor is used.
GRMON can be connected to the target using RS232, JTAG, ethernet, USB, PCI or SpaceWire. The
most convenient way is probably to use JTAG.

Please refer to the GRMON2 User’s Manual for a description of the GRMONZ2 operations. The output
below is an example of GRMON output after connecting to a system:

initialising -........_..._..
detected frequency: 40 MHz

Component Vendor

LEON3 SPARC V8 Processor Gaisler Research
AHB Debug UART Gaisler Research
AHB Debug JTAG TAP Gaisler Research
SVGA frame buffer Gaisler Research
GR Ethernet MAC Gaisler Research
AHB ROM Gaisler Research
AHB/APB Bridge Gaisler Research
LEON3 Debug Support Unit Gaisler Research
DDR266 Controller Gaisler Research
Generic APB UART Gaisler Research
Multi-processor Interrupt Ctrl Gaisler Research
Modular Timer Unit Gaisler Research
Keyboard PS/2 interface Gaisler Research
Keyboard PS/2 interface Gaisler Research

To download an application, use the ‘load’ command. To run it, use ‘run’:

load stanford.exe
run

The console output will occur in the grmon window if grmon was started with -u, otherwise it will be
send to the RS232 connector of the board.

www.cobham.com/gaisler

GRLIB IP Library

3.9

3.10

Flash PROM programming

The GR-XC3S-1500 board has a 64 Mbit (8Mx8) Intel flash PROM for LEONS application software.
A PROM image is typically created with the MKPROM?2 utility that can be downloaded from http://
www.gaisler.com.

Once the PROM image has been created, the on-board flash PROM can be programmed through
GRMON. The procedure is described in the GRMON manual, below is the required GRMON com-
mand sequence:

flash erase all
flash load prom.out

Software development

The LEON3 and LEON4 processors are supported by several free software tool chains:
* Bare-C cross-compiler system (BCC)

® RTEMS cross-compiler system (RCC)

* Linuxbuild embedded linux

All these tool chains and associated documentation can be downloaded from www.gaisler.com.

In addition, LEON is supported by several commercial alternatives. Please contact Cobham Gaisler
for additional information or see http://www.gaisler.com.

www.cobham.com/gaisler

http://www.gaisler.com

GRLIB IP Library

GRLIB, Jan 2016, Version 1.5.0 18 www.cobham.com/gaisler

GRLIB IP Library

4
4.1

4.2

Implementation flow

Introduction

The following sections will describe how simulation and synthesis is performed using the GRLIB
make system. It is recommended to try out the various commands on one of the template designs,
such as designs/leon3mp.

Using Makefiles and generating scripts

GRLIB consists of a set of VHDL libraries from which IP cores are instantiated into a local design.
GRLIB can be installed in a in a global location (such as on a network share that is used by several
designers) and be used in read-only mode. Note that for some technologies it is possible to install ven-
dor specific libraries into the GRLIB tree. In this case, write permission is required for the user that
performs the library install.

All compilation, simulation and synthesis is done in a local design directory, using tool-specific
scripts. The GRLIB IP cores (components) are instantiated in the local design by the inclusion of var-
ious GRLIB packages, declaring the components and associated data types.

A design typically contains of one or more VHDL files, and a local makefile:

bash$ Is -g mydesign
-rw-r--r-- 1 users
-rw-r--r-- 1 users

1776 May 25 10:37 Makefile
12406 May 25 10:46 mydesign.vhd

The GRLIB files are accessed through the environment variable GRLIB. This variable can either be
set in the local shell or in a local makefile, since the ‘make’ utility is used to automate various com-
mon tasks. A GRLIB-specific makefile is located in bin/Makefile. To avoid having to specify the
GRLIB makefile using the -f option, the local makefile should includes the GRLIB makefile:

GRLIB=../../grlib
include $(GRLIB)/bin/Makefile

Running ‘make help” with this makefile will print a short menu:
$ make help

interactive targets:

make avhdl-launch

make riviera-launch
make vsim-launch

make ncsim-launch

make actel-launch-synp
make ise-launch

make ise-launch-synp
make quartus-launch
make quartus-launch-synp
make synplify-launch
make vivado-launch
make planahead-launch
make xgrlib

: start active-hdl gui mode
: start riviera
: start modelsim
: compile design using ncsim
: start Actel Designer for current project
: start ISE project navigator for XST project
: start ISE project navigator for synplify project
: start Quartus for current project
: start Quartus for synplify project
: start synplify
: start Vivado project navigator
: start PlanAhead project navigator
: start grlib GUI

batch targets:
make avhdl

make vsimsa
make riviera

: compile design using active-hdl gui mode
- compile design using active-hdl batch mode
: compile design using riviera

make vsim - compile design using modelsim

make ncsim - compile design using ncsim

make ghdl - compile design using GHDL

make actel : synthesize with synplify, place&route Actel Designer
make ise : synthesize and place&route with Xilinx ISE

make ise-map

make ise-prec
make ise-synp
make isp-synp
make quartus

make quartus-map
make quartus-synp
make precision
make synplify

: synthesize design using Xilinx XST

: synthesize with precision, place&route with Xilinx ISE
: synthesize with synplify, place&route with Xilinx ISE
: synthesize with synplify, place&route with ISPLever

: synthesize and place&route using Quartus

: synthesize design using Quartus

: synthesize with synplify, place&route with Quartus

: synthesize design using precision

: synthesize design using synplify

make scripts : generate compile scripts only
make vivado : synthesize and place&route with Xilinx Vivado
make planahead : synthesize and place&route with Xilinx PlanAhead

www.cobham.com/gaisler

GRLIB IP Library

make clean : remove all temporary files except scripts
make distclean : remove all temporary files

Generating tool-specific compile scripts can be done as follows:

$ make scripts
$ Is compile.*
compile.dc compile.ncsim compile.synp compile.vsim compile.xst compile.ghdl

The local makefile is primarily used to generate tool-specific compile scripts and project files, but can
also be used to compile and synthesize the current design. To do this, additional settings in the make-
file are needed. The makefile in the design template grlib/designs/leon3mp can be seen as an exam-
ple:

$ cd grlib/designs/leon3mp

$ cat Makefile

GRLIB=../..

TOP=1eon3mp

BOARD=gr-pci-xc2v

include $(GRLIB)/boards/$(BOARD)/Makefile.inc
DEVICE=$(PART)-$(PACKAGE)$(SPEED)
UCF=$(GRLIB)/boards/$(BOARD)/$(TOP) .ucf
QSF=$(BOARD) .qsf

EFFORT=1

VHDLSYNFILES=config.vhd leon3mp.vhd
VHDLSIMFILES=testbench.vhd

SIMTOP=testbench
SDCFILE=$(GRLIB)/boards/$(BOARD)/default.sdc
BITGEN=$(GRLIB)/boards/$(BOARD)/default.ut
CLEAN=local-clean

include $(GRLIB)/bin/Makefile

The table below summarizes the common (target independent) ‘make’ targets:

TABLE 1. Common make targets

Make target Description

scripts Generate GRLIB compile scripts for all supported tools

xconfig Run the graphic configuration tool (leon3 designs)

clean Remove all temporary files except scripts and project files

distclean Remove all temporary files

xgrlib Run the graphical implementation tool (see “XGrlib graphical imple-
mentation tool” on page 45)

Simulation, synthesis and place&route of GRLIB designs can also be done using a graphical tool
called xgrlib. This tool is described further in chapter “XGrlib graphical implementation tool” on
page 45.

www.cobham.com/gaisler

GRLIB IP Library

4.3

Simulating a design

4.3.1 Overview

The “‘make scripts’ command will generate compile scripts and/or project files for the Model/Questa-
Sim, Riviera, NCsim, Xilinx and gHDL simulators. This is done by scanning GRLIB for simulation
files according to the method described in “GRLIB organisation” on page 79. These scripts are then
used by further make targets to build and update a GRLIB-based design and its test bench. The local
makefile should set the VHDLSYNFILES to contain all synthesizable VHDL files of the local design.
Likewise, the VHDLSIMFILES variable should be set to contain all local design files to be used for
simulation only. The variable TOP should be set to the name of the top level design entity, and the
variable SIMTOP should be set to the name of the top level simulation entity (e.g. the test bench).

VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd
VHDLSIMFILES=testbench.vhd

TOP=leon3mp

SIMTOP=testbench

The variables must be set before the GRLIB makefile is included, as in the example above.

All local design files are compiled into the VHDL work library, while the GRLIB cores are compiled
into their respective VHDL libraries.

The following simulators are currently supported by GRLIB:

TABLE 2. Supported simulators

Simulator Comments

GNU VHDL (GHDL) version 0.25, VHDL only
Aldec Active-HDL batch and GUI

Aldec Riviera batch and GUI

Mentor Modelsim version version 6.1e or later
Cadence NcSim 1US-5.8-sp3 and later
Xilinx ISIM ISE-13 or later

Xilinx XSIM Vivado 2015.4

4.3.2 GRLIB_SIMULATOR environment variable

Some designs (including Xilinx 7-series designs and designs that use the Xilinx MIG or other compo-
nents that require installation of special libraries such as SecurelP or SIMPRIMS) require that exter-
nal tools are invoked in order to build the simulation libraries. In this case, the GRLIB infrastructure
must be made aware of which simulator that will be used. This is done by setting the GRLIB_SIMU-
LATOR variable. Table 3 lists allowed values for GRLIB_SIMULATOR.

TABLE 3. GRLIB_SIMULATOR values

Value Comment

ALDEC Aldec Riviera Pro or Aldec ActiveHDL

ALDEC_RWS | Aldec Riviera Pro Workspace (WS) flow, see section 4.7.7.
ModelSim Mentor ModelSim SE or QuestaSim

ModelSim-PE | ModelSim PE

ModelSim-SE | Alias for ModelSim

Questa Mentor QuestaSim

Xilinx Xilinx XSim/ISim

The default value for GRLIB_SIMULATOR is ModelSim.

www.cobham.com/gaisler

GRLIB IP Library

4.4

Synthesis and place&route

The make scripts command will scan the GRLIB files and generate compile and project files for all
supported synthesis tools. For this to work, a number of variables must be set in the local makefile:
TOP=1eon3mp

TECHNOLOGY=Vi rtex2

PART=xc2v3000

PACKAGE=Tg676

SPEED=-4

VHDLSYNFILES=config.vhd ahbrom.vhd leon3mp.vhd

SDCFILE=

XSTOPT=-resource_sharing no

DEVICE=xc2v3000-fg676-4

UCF=default_ucf

EFFORT=std

BITGEN=default.ut

The TOP variable should be set to the top level entity name to be synthesized. TECHNOLOGY,
PART, PACKAGE and SPEED should indicate the target device parameters. VHDLSYNFILES
should be set to all local design files that should be used for synthesis. SDCFILE should be set to the
(optional) Synplify constraints file, while XSTOPT should indicate additional XST synthesis options.
The UCF variable should indicate the Xilinx constraint file, while QSF should indicate the Quartus
constraint file. The EFFORT variable indicates the Xilinx place&route effort and the BITGEN vari-
able defines the input script for Xilinx bitfile generation.

The technology related variables are often defined in a makefile include file in the board support
packages under GRLIB/boards. When a supported board is targeted, the local makefile can include
the board include file to make the design more portable:

BOARD=gr-pci-xc2v

include $(GRLIB)/boards/$(BOARD)/Makefile.inc

SDCFILE=$(GRLIB)/boards/$(BOARD)/$(TOP) .sdc

UCF=$(GRL IB)/boards/$(BOARD)/$(TOP) .uct
DEVICE=$(PART)-$(PACKAGE)-$(SPEED)

The following synthesis tools are currently supported by GRLIB:

TABLE 4. Supported synthesis and place&route tools

Syntesis and place&route tool

Recommended version

Actel Designer/Libero

version 9.2-SP2, 11.6

Altera Quartus

version 13, 14, 15.1

Cadence RTLC

version 6.1 (GRLIB is not continuously tested with this
tool, feedback is appreciated)

Lattice Diamond

version 1.3 (GRLIB is not continuously tested with this
tool, feedback is appreciated)

Mentor Leonardo Precision

2014 and later

Synopsys DC 2010.12 and later

Synplify 2015.03 and later

Xilinx ISE/XST* version 10.3, 13.2, 13.4, 14.7

Xilinx Vivado 2013.1, 2015.4 (see README.txt in template design)

Xilinx PlanAhead

version 14.7

* NOTE: The XST option -use_new_parser yes should NOT be used with GRLIB. The option is known to cre-
ate bugs in the generated netlist when targeting Virtex-5 (verified with ISE13.2 and 14.7 that produce a design

with a malfunctioning LEON3 cache controller).

Note that the batch targets for invoking the synthesis tools typically do not depend on the complete
file list. If one of the local design files is modified then the tool will typically be re-run on the whole
design. If a design file in a GRLIB library is modified then it may be necessary to run the command
‘make distclean’ to remove the currently generated files in order to resynthesize the full design using
the batch targets.

www.cobham.com/gaisler

GRLIB IP Library

4.5

Skipping unused libraries, directories and files

GRLIB contains a large amount of files, and creating scripts and compiling models might take some
time. To speed up this process, it is possible to skip whole libraries, directories or individual files from
being included in the tool scripts. Skipping VHDL libraries is done by defining the constant LIBSKIP
in the Makefile of the current design, before the inclusion of the GRLIB global Makefile.

To skip a directory in a library, variable DIRSKIP should be used. All directories with the defined
names will be excluded when the tool scripts are built. In this way, cores which are not used in the
current design can be excluded from the scripts. To skip an individual file, the variable FILESKIP
should be set to the file(s) that should be skipped. Below is an example from the a template design.
All target technology libraries except unisim (Xilinx) are skipped, as well as cores such as PCI, DDR
and Spacewire. Care has to be taken to skip all dependent directories when a library is skipped.

LIBSKIP = corel553bbc corel553brm corel553brt grl553 corePCIF \

tmtc cypress ihp opencores spw
DIRSKIP = b1553 pcif leon2 leon2ft crypto satcan pci leon3ft ambatest \
spacewire ddr can usb ata

FILESKIP = grcan.vhd

include $(GRLIB)/bin/Makefile

By default, all technology cells and mapping wrappers are included in the scripts and later compiled.
To select only one or a sub-set of technologies, the variable TECHLIBS can be set in the makefile:

TECHLIBS = unisim

The table below shows which libraries should added to TECHLIBS for each supported technology.

TABLE 5. TECHLIB settings for various target technologies

Technology TECHLIBS defines

Xilinx (All) unisim
If TECHNOLOGY is set to Virtex2, Virtex4, Spartan3, Spartax3E or
Spartan6 then the GRLIB infrastructure will automatically add virtex to
TECHLIBS. lib/techmap/virtex contains mappings used for these tech-
nologies that depend on UNISIMS components that are not available in
later Xilinx tools, such as Vivado.

Altera Stratix-II altera altera_mf stratixii

Altera Cyclone-IlI altera altera_mf cycloneiii

Altera Stratix-I11 altera altera_mf stratixiii

Altera others

altera altera_mf

Actel/Microsemi Axcelerator

axcelerator

Actel/Microsemi Axcelerator
DSP

axcelerator

Actel/Microsemi Proasic3/e3/3l

proasic3/proasic3e/proasic3l

Actel/Microsemi Fusion

fusion

Actel/Microsemi IGLOO2/Smart-
Fusion2

igloo2/smartfusion2

Actel/Microsemi RTG4 rtg4

Lattice ec
Quicklogic eclipsee
Atmel ATC18 atc18 virage
Atmel ATC18RHA atc18rha_cell
eASIC 90 nm nextreme

www.cobham.com/gaisler

GRLIB IP Library

TABLE 5. TECHLIB settings for various target technologies

Technology TECHLIBS defines
eASIC 45 nm nextreme2
IHP 0.25 ihp25

IHP 0.25 RH sgh25vrh
Aeroflex 0.25 RH ut025crh
Aeroflex 0.13 RH ut130hbd
Ramon 0.18 RH rh_lib18t
STM C65SPACE rhs65
UMC 0.18 um umcl8
UMC 0.18 um DARE dare
TSMC 90 nm tsmc90

Note that availability of technology mappings for the technologies listed above varies with type of
GRLIB distribution. Contact Cobham Gaisler for details.

It is also possible to skip compliation of the simulation libraries (located in the tech/ directory in the
GRLIB file tree). This can be useful if prebuilt libraries should used since these may otherwise be
overwritten when compiling the full GRLIB file list. In order to skip compliation of simulation librar-

ies set:

SKIP_SIM_TECHLIBS=1

This will prevent files under lib/tech/ from being built. Note that technology map files under lib/tech-
map may depend on libraries in lib/tech/ and that any prebuilt libraries should be mapped before com-

piling the GRLIB files.

www.cobham.com/gaisler

GRLIB IP Library

4.6

Encrypted RTL

GRLIB supports encrypted script generation to include encrypted RTL files. The information in this
section is applicable if you have purchased GRLIB IP cores that are delivered as encrypted RTL. The
open source (GPL) release of GRLIB does not include any encrypted RTL.

There are several different solutions for IP protection available from the EDA vendors. Standardisa-
tion work is ongoing but at the time of writing it is not possible to generate one encrypted RTL file
that can be used with tools from all vendors. Because of this, encrypted RTL is delivered in several
versions. All versions contain the same RTL but in different containers to be used with a specific
EDA tool.

Currently the GRLIB script generation supports IP protection (encrypted RTL) for the following
tools:

Aldec Riviera-PRO (key ALDECO015_001, for Riviera 2015.06 and later)

Cadence tools supporting Cadence IP protection (proprietary and IEEE-P1735)

Mentor Graphics tools with support for IEEE-P1735 (ModelSim version 6.6+, latest Precision)
Mentor Graphics FormalPro (Linux, tested with version 2015.1)

Microsemi (using key MSL-IP-KEY_RSA)

Synopsys Design Compiler with support for IEEE-P1735

Synopsys Synplify with support for IEEE-P1735 (version 2012.03 and later)

Xilinx ISE and Vivado

Please contact Cobham Gaisler to ensure that your EDA tools are capable of working with GRLIB
and encrypted RTL. Specify which tools you will use at the time of order when placing an order for IP
cores that are delivered as encrypted RTL.

The RTL source is not available for viewing and simulator views are restricted when using compo-
nents that are delivered as encrypted RTL.

www.cobham.com/gaisler

GRLIB IP Library

4.7

Tool-specific usage

4.7.1 GNU VHDL (GHDL)

GHDL is the GNU VHDL compiler/simulator, available from http://ghdl.free.fr/.

The complete GRLIB as well as the local design are compiled by make ghdl. The simulation models
will be stored locally in a sub-directory (./gnu). A ghdl.path file will be created automatically, con-
taining the proper VHDL library mapping definitions. A sub-sequent invocation of make ghdl will re-
analyze any outdated files in the WORK library using a makefile created with ‘ghdl --gen-makefile’.

GRLIB files will not be re-analyzed without a make ghdl-clean first.

GHDL creates an executable with the name of the SIMTOP variable. Simulation is started by directly
executing the created binary:

$./testbench

TABLE 6. GHDL make targets

Make target Description

ghdl Compile or re-analyze local design

ghdl-clean Remove compiled models and temporary files
ghdl-run Run test bench in batchmode

TABLE 7. GHDL scripts and files

File Description

compile.ghdl Compile script for GRLIB files

make.ghdl Makefile to rebuild local design

gnu Directory with compiled models

SIMTOP Executable simulation model of test bench

www.cobham.com/gaisler

GRLIB IP Library

4.7.2 Cadence ncsim

The complete GRLIB as well as the local design are compiled and elaborated in batch mode by make
ncsim. The simulation models will be stored locally in a sub-directory (./xncsim). A cds.lib file will
be created automatically, containing the proper VHDL library mapping definitions, as well as an
empty hdl.var. Simulation can then be started by using make ncsim-launch.

[x] Design Browser 1 - SimVision [Cl=1a]
File Edit ¥iew Select Esplore Simulation Windows Help
.= 4 5 i by Send To: (n)

nawum imaxs (& REDBYES

“ Search Times: Value -

[alue (as recarded) +|

: ons.. | - adiress *h000005E A
Browse: All Available Data | Options... @i = %’ &
S IL? — J g qZh pexcr U H
oty @gaislerdevices " A |- T pray Y
& @gaislerleons |7 W | g cﬁf 1
: e | e &
b @ga?sler.l?bcache 614 clkpsriod et
dta @gaislerlibclk %y clktsch 40
& @gaislerlibdcom @A ot d10
i @uaislerlibiu] -4 gt 'hac100000
Leaf Filter: | = @ ﬂﬁ dbguart 'dD .
: : I =
Showe contents: | In the signal list area = |
St l_l_l_l_l_l_l_ Fllterl—

®

|1 ohject selected

Figure 2. Ncsim graphical user interface

To rebuild the local design, run make ncsimagain. This will use the ncupdate utility to rebuild out-of-
date files. The tables below summarizes the make targets and the files creates by make scripts.

TABLE 8. Ncsim make targets

Make target

Description

ncsim

Compile or re-analyze GRLIB and local design

ncsim-clean

Remove compiled models and temporary files

ncsim-launch

Start modelsim GUI on current test bench

ncsim-run

Run test bench in batchmode

TABLE 9. Ncsim scripts and files

File

Description

compile.ncsim

Compile script for GRLIB files

make.ncsim

Makefile to rebuild GRLIB and local design

Xxncsim

Directory with compiled models

GRLIB, Jan 2016, Version 1.5.0

27

www.cobham.com/gaisler

GRLIB IP Library

4.7.3 Mentor FormalPro

FormalPro can be launched with its GUI using make fpro-launch. The command line mode can be
started using make fpro-run. In order to perform a sanity check on the flow and RTL design, make
fpro-launch-rtl2rtl and make fpro-run-rtl2rtl can be used to perform verification using the same
RTL file list for both A and B. The intended flow is to start FormalPro with make fpro-launch that
will load the project RTL files a set A. The user will then need to specify the other design (B) to per-
form the equivalence check against using the GUI.

TABLE 10. FormalPro make targets

Make target Description

fpro-launch Start FormalPro in GUI mode and load RTL filelist as A
fpro-launch-rti2rtl Start FormalPro in GUI mode and load RTL filelist as Aand B
fpro-run Start FormalPro in CLI mode and load RTL filelist as A
fpro-run-rti2rtl Start FormalPro in CLI mode and load RTL filelist as A and B

TABLE 11. FormalPro scripts and files

File Description

TOP_rtl_fpro.fl FormalPro filelist of project RTL files. TOP in the filename is replaced
with the top-level design name, typically leon3mp or leon4mp.

www.cobham.com/gaisler

GRLIB IP Library

4.7.4 Mentor ModelSim

The complete GRLIB as well as the local design are compiled by make vsim. The compiled simulation
models will be stored locally in a sub-directory (./modelsim). A modelsim.ini file will be created
automatically, containing the necessary VHDL library mapping definitions. Running make vsim again
will then use a vmake-generated makefile to check dependencies and rebuild out of date modules..

An other way to compile and simulate the library with modelsim is to use a modelsim project file.
When doing make scripts, @ modelsim project file is created. It is then possible to start vsim with this
project file and perform compilation within vsim. In this case, vsim should be started with make vsim-
launch. In the vsim window, click on the build-all icon to compile the complete library and the local
design. The project file also includes one simulation configuration, which can be used to simulate the
test bench (see figure below).

[l ModelSim SE PLUS 5.8 [Bl=1ra]
File Edit ¥iew Compile Simulate Tools Window Help
ELTIRERE]
Workspace x|
#* Errar: (vish-19) Failed to access library work' at" S TlName |Statu{Type |Order | Modified -S
modelsimiwark’.
Ma such file or directary. (errno = ENOENT) H] eth_oc.vhd ? WHDL 159 11003704 05:25:08 P
#do libs.do H] edclvhd ? WHDL 160 1111 7/04 04:52:40 P
OpenFile "testbench.mpf H] debug.vhd % WHDL 181 10/19/04 03:40:04 P
#Loading project testhench H] devicesvhd % VHDL 162 10/19/04 03:40:04 PM
WMadealSirn= H] ahbreportvhd P WHDL 163 10M9/04 03:40:04 PM
H] apbreportyvhd ? WHDL 164 10/19/04 03:40:04 P
H] config.vhd ? WHDL 165 111604 11:18:42 P
H] leon3mpyhd ? WHDL 166 11117/04 04:55:33 P
H] testbenchyhd ? WHDL 167 11001704 12:22:27 P
7 Simulatior 1 Simulation 7'
~ =
"/ |1 Project [Tibrary
|Pr0ject : testhench |Loading |<N0 Contexts A
L Il

Figure 3. Modelsim simulator window using a project file

TABLE 12. Modelsim make targets

Make target Description

vsim Compile or re-analyze local design

vsim-clean Remove compiled models and temporary files

vsim-launch Start modelsim GUI on current test bench

vsim-fix Run after make vsim to fix problems with make in CygWin
vsim-run Run test bench in batchmode

TABLE 13. Modelsim scripts and files

File Description

compile.vsim Compile script for GRLIB files

make.work Makefile to rebuild GRLIB and local design
modelsim Directory with compiled models

SIMTOP.mpf | Modelsim project file for compilation and simulation

GRLIB, Jan 2016, Version 1.5.0 29 www.cobham.com/gaisler

GRLIB IP Library

475 Aldec Active-HDL

The Active-HDL tool from Aldec can be used in the standalone batch mode (vsimsa.bat) and in the
GUI mode (avhdl.exe, or started from Windows icon/menu).

The batch mode does not support waveforms and is generally not directly transferable to the GUI
mode. The batch mode uses ModelSim compatible command line names such as vlib and vcom. To
use the batch mode, one must ensure that these commands are visible in the shell to be used. Note that
the batch mode simulator requires a separate license from Active-HDL.

In batch mode, the completed GRLIB as well as the local design are compiled by make vsimsa. The
compiled simulation models will be stored locally in a sub-directory (./activehdl). A vsimsa.cfg file
will be created automatically, containing the necessary VHDL library mapping definitions. The simu-
lation can then be started using the Active-HDL vsimsa.bat or vsim command. The simulation can
also be started with make vsimsa-run.

Another way to compile and simulate the library is with the Active-HDL GUI using a tcl command
file. When doing make avhdl, the tcl command file is automatically created for GRLIB and the local
design files. The file can then be executed within Active-HDL with do avhdl.tcl, creating all necessary
libraries and compiling all files. The compiled simulation models will be stored locally in a sub-direc-
tory (./work). Note that only the local design files are directly accessible from the design browser
within Active-HDL. The compilation and simulation can also be started from the cygwin command
line with make avhdI-launch.

Note that it is not possible to use both batch and GUI mode in the same design directory.

Note that simulation libraries provided with GRLIB may collide with libraries that are automatically
included by Active-HDL. In this case the user needs to determine if the GRLIBIibraries should be
skipped or if the inclusion of Aldec’s own libraries should be disabled in Active-HDL.

TABLE 14. Active-HDL make targets

Make target Description

vsimsa Compile GRLIB and local design

vsimsa-clean Remove compiled models and temporary files

vsim-run Run test bench in batch mode (must be compiled first)

avhdl Setup GRLIB and local design

avhdl-clean Remove compiled models and temporary files

avhdl-launch Compile and Run test bench in GUI mode (must be setup first)

TABLE 15. Active-HDL scripts and files

File Description

compile.asim Compile script for GRLIB files (batch mode)

make.asim Compile script for GRLIB files and local design (batch mode)
activehdl Directory with compiled models (batch mode)

work Directory with compiled models (GUI mode)

avhdl.tcl Active-HDL tcl file for compilation and simulation (GUI mode)

www.cobham.com/gaisler

GRLIB IP Library

4.7.6 Aldec ALINT

The ALINT tool from Aldec can be used in the standalone batch mode and in the GUI mode.

TABLE 16. ALINT make targets

Make target Description
alint-comp Compilation time linting
alint-elab Compilation time linting followed by elaboration time linting
GRLIB, Jan 2016, Version 1.5.0 31 www.cobham.com/gaisler

GRLIB IP Library

4.7.7 Aldec Riviera

The Riviera tool from Aldec can be used in the standalone batch mode and in the GUI mode. The two
modes are compatible, using the same compiled database.

In both modes, the complete GRLIB as well as the local design are compiled by make riviera.

If GRLIB_SIMULATOR is set to ALDEC_RWS then the compiled simulation models will be stored
locally within a Riviera workspace in a sub-directory (./riviera_ws). If GRLIB_SIMULATOR is set to
ALDEC then a legacy flow will be used, without creating the Riviera workspace. The recommended
setting is GRLIB_SIMULATOR=ALDEC

The standalone batch mode simulation can be started with make riviera-run. The GUI mode simulation
can be started with make riviera-launch. Both of these targets require make riviera to be run first in order
to compile the design.

...... i i d gk b b S el R et S
Elis Sewch Ylew Lol Cosplsbon Sputdon Toon {3 Havefom Wintow el » -

Hﬁh_l:_’?_u] R - -l 4% % B W B T i /EE

-ﬂ_".l U -‘\.Klauu +I Jﬁs w EI'.-:IM Eu el Bl Sk Bk

e - T} sugnllmnl [vanin 1 = un
= {3 Aol warl Bt nch x &
v O 63 | wark inandeg () :I rﬁ = v = ! : JIL'.' 312 52 g | il
5 4 pieesl_0 - werk pramd [pramdd) W oawing meciny E s L
dp) promD_ 1 wonk prosd [prosd) apraning el !
B+ ff promb__5 - werk pramd] [prosd) v e o mrom i =l
4 Frosl) wnopowd fosd = C13T1A_lqin g i = whir oo | o 1
4l] = LY dabriiy B o-axds ETIPLIE 1 k| i
] =l B e whe 0] = rae if r S T 8 1
o du B o rwmsn i | CEE— | &
Hume Jvos [ripe EEALET: [~y P [L L) 1
- pti_pw - i ni_uope =] TquiciA i = - Wl (W e —
o pri_rey st il _utager Jectdcongae 00 o L "
I { % o _Jaic 1 8cand = : m
el i an i g et | 1
- pei_haat =i wii_utagee L rvepale ase -
-1 Clsdagr 1 CEwmiEs] -
pei Bk u vl utogc _J'I-:./\-l b AL o Lmmvegee } —
comela ghai -
Mlab e w =U Ll e anan S0
il] DConmyn bimenes | Fibgnyiims L-wmll & e e
= WpEtrl: 1/0 ports st OzB0000L00, mize 256 Byte |
| UL: mpbotri: slvi: Onisler Ressarch m]t:-procu:cr Intsrrupt CErl.
ioe mpbatrl: 1/0 pores st (zBO0OOZO0, size 256 byte
apbotric sivi: Jaisler Ressarch Modular Timer Gnit
apbanrl: 1/0 ports st OzBOOOD300, mise 256 byte
apbotrl: s1v7: Gaislsr Research AHE Dabug UART
apkserls 1/0 ports st DzBOOOOT0O, wize 258 Byis
apbatrl: slvll: Qaisler Ressarch Taneral r:r;c:-e I/0 port
apbatrl: 1/0 ports at DxBO0O0BO0, wize 256 bByie
Lewcnd (@ LEONY ERARC VI processor rev 0
leemI 0: jesche 104 kbyte, deache 1°4 kbyte
phbuartT; AHE Dwbug UART rev O
apbuartl: Ganacic UART vev L, fifo 4, irg 2
irqmp: Multi-processor Interrupt Conmtroller rev 3, bopu i
‘Lo gpEimerd: GE Timar Onit rev 0, S=bit scalar, 2 32-bit eissrs, ivg B
grgpiclly 12-bit GPID Unit rey O
s ptepped Bt time: S0 uw

|
e

TABLE 17. Riviera make targets

Make target Description

riviera Compile GRLIB and local design

riviera-clean Remove compiled models and temporary files
riviera-run Run test bench in batch mode (must be compiled first)
riviera-launch Run test bench in GUI mode (must be compiled first)

TABLE 18. Riviera scripts and files

File Description
make.riviera Riviera script for GRLIB_SIMULATOR=ALDEC
riviera_ws_create.do Rivera script file for simulation (GUI mode)

GRLIB, Jan 2016, Version 1.5.0 32 www.cobham.com/gaisler

GRLIB IP Library

4.7.8 Synthesis with Synplify

The make scripts command will create a compile.synp file which contains Synplify tcl commands for
analyzing all GRLIB files and a synplify project file called TOP_synplify.prj, where TOP will be
replaced with the name of the top level entity.

Synthesizing the design in batch mode using the generated project file can be done in one step using
make synplify. All synthesis results will be stored locally in a sub-directory (./synplify). Running Syn-
plify in batch requires that it supports the -batch option (Synplify Professional). If the installed Syn-
plify version does not support -batch, first create the project file and then run Synplify interactively.
By default, the synplify executable is called ‘synplify_pro’. This can be changed by supplying the
SYNPLIFY variable to ‘make’:

make synplify SYNPLIFY=synplify_pro.exe

The synthesis script will set the following mapping option by default:
set_option -symbolic_fsm_compiler 0O

set_option -resource_sharing 0

set_option -use_fsm explorer 0

set_option -write_vhdl 1

set_option -disable_io_insertion 0

Additional options can be set through the SYNPOPT variable in the Makefile:
SYNPOPT=""set_option -pipe 0; set_option -retiming 1”

TABLE 19. Synplify make targets

Make target Description

synplify Synthesize design in batch mode

synplify-clean Remove compiled models and temporary files
synplify-launch Start synplify interactively using generated project file

TABLE 20. Synplify scripts and files

File Description

compile.synp Tcl compile script for all GRLIB files
TOP_synplify.prj Synplify project file

synplify Directory with netlist and log files

www.cobham.com/gaisler

GRLIB IP Library

4.7.9 Synthesis with Mentor Precision

Note: GRLIB contains support for generating project files for Precision and starting the tool. Preci-
sion support is provided as-is and is not tested with the latest versions by Cobham Gaisler.

The make scripts command will create a TOP_precision.tcl file which contains tcl script to create a Pre-
cision project file. The project file (TOP_precision.psp) is created on the first invocation of Precision,
but can also be created manually with precision -shell -file TOP_precision.tcl.

Synthesizing the design in batch mode can be done in one step using make precision. All synthesis
results will be stored locally in a sub-directory (./precision). Precision can also be run interactively by
issuing make precision-launch. By default, the Precision executable is called with ‘precision’. This can
be changed by supplying the PRECISION variable to ‘make’:

make precision PRECISION=/usr/local/bin/precision

- At e e ol]
Bk e e e e .JH.IJ
Dad r s lma wa |
S B a0 (1D B R, ey < T
e
" |
|

The environment variable PRECISIONOPT can be set in to pass arguments to Precision. For exam-
ple, to always start with RTL+ the following line can be added to the design Makefile:

PRECISIONOPT=-rtlIplus

TABLE 21. Precision make targets

Make target

Description

precision

Synthesize design in batch mode

precision-clean

Remove compiled models and temporary files

precision-launch

Start Precision interactively using generated project file

TABLE 22. Precision scripts and files

File

Description

TOP_precision.tcl

Tcl compile script to create Precision project file

TOP_precision.psp

Precision project file

precision

Directory with netlist and log files

GRLIB, Jan 2016, Version 1.5.0 34

www.cobham.com/gaisler

GRLIB IP Library

4.7.10 Actel Designer

Actel Designer is used to place&route designs targeting Actel FPGAs. It does not include a synthesis
engine, and the design must first be synthesized with synplify.

The make scripts command will generate a tcl script to perform place&route of the local design in
batch mode. The tcl script is named TOP_designer.tcl, where TOP is replaced with the name of the
top entity.

The command make actel will place&route the design using the created tcl script. The design data-
base will be place in actel/TOP.adb. The command make actel-launch will load the edif netlist of
the current design, and start Designer in interactive mode.

GRLIB includes a leon3 design template for the GR-CPCI-AX board from Pender/Gaisler. The tem-
plate design is located designs/leon3-gr-cpci-ax. The local design file uses board settings from the
boards/gr-cpci-ax directory. The leon3-gr-cpci-ax design can be used a template for other AX-based
projects.

A template design can specify the variable DESIGNER_LAYOUT_OPT to override the switches
passed to the layout command.

TABLE 23. Actel Designer make targets

Make target Description

actel Place&route design in batch mode

actel-clean Remove compiled models and temporary files

actel-launch Start Designer interactively using synplify netlist

actel-from Create FROM memory simulation (from.mem) and programming
(from.ufc) files from the input hex file (from.hex)

TABLE 24. Actel Designer scripts and files

File Description

TOP_designer.tcl Batch script for Actel Designer place&route

www.cobham.com/gaisler

GRLIB IP Library

4.7.11 Actel Libero

Actel Libero is an integrated design environment for implementing Actel FPGAs. It consists of Actel-
specific versions of Synplify and Modelsim, together with the Actel Designer back-end tool.

Using Libero to implement GRLIB designs is possible using recent versions of Libero IDE and
Libero SoC. The make scripts command will create a Libero project file called TOP_libero.prj.
Libero can then be started with libero TOP_libero.prj, or by the command make libero-launch.
Implementation of the design is done using the normal Libero flow.

i Litvera MOE - Wisve Jir s el el desigoin Sean] 1t et an - cifs. basndaap fibera. o S
Eob Eo Vimw Project Process Window Halp
BE@OEE 0 F o 3 n | My o ¥ I Enabie Dosignar Block croaton |

Cument v (g s k]
[Design Teplarer § .| [Teeiates Hing |
= Default Configurabion = [vHOL = “Denign Paw = .__!_ur_
S il v % [Common consiruchs . ; A
' [BY testhunch festhiench vhi + 1 Languags constact | i Daeign: EMF:TWIS Ragt:lromimp
+ M mon3mg peondmp....| + [Aawanced constructs B % Pre Synthesi
B midfict ém1Bad feiceon| =1 L0 Languags constacts £ MO Eder Smaniten Past-Symihe Configure Design Flow.
[Ao fmd a2 micron 1 User templates 4 ‘
L sram fo 31 [Verlog +
3 M) sraml@ [gaisied] (srantd o
By srann [gaisier] (sramty
By griestmoa (griestmon v |
B gasler_cpu_seas fepu_ang Simulafion
B cpu_disas fcpu_meas i)
[B abbrom (ahbrom vhd) B bt st | E i
@ coety (config vhd) ™ B 5
i @ cebuy (dabug vha e St B | owenForme
= onin
<l apa
= apad
& il ascelerstor
o Wl el
ol umcin
@ sl
: w2 l
& il techmap
+ o & o
3. @ opencarmt
o il conPCiE 1 i
—_—— =]
Design Hie .. |i‘|lnMn|ll"r | — 1
B What's new
R e * testbench. vhd'.
e leordnp, Libero propect was opened, o z]
|Etart] 2 15in simulator for pre-smthesis simdlation,. 7]
I I i XY e T Y S =
Ready | [VHOL [FAM Axcessraior B AXEG00 [PRG 556 FRGA 0

Note that when synplify is launched from Libero the first time, the constraints file defined in the local
Makefile is not included in the project, and must be added manually. Before simulation is started first
time, the file testbench.vhd in the template design should be associated as stimulify file.

TABLE 25. Libero make targets

Make target Description

scripts Created libero project file

libero-launch Create project file and launch libero

libero-from Create FROM memory simulation (from.mem) and programming
(from.ufc) files from the input hex file (from.hex)

TABLE 26. Libero scripts and files

File Description
TOP_libero.prj Libero project file

GRLIB, Jan 2016, Version 1.5.0 36 www.cobham.com/gaisler

GRLIB IP Library

4.7.12 Altera Quartus

Altera Quartus is used for Altera FPGA targets, and can be used to both synthesize and place&route a
design. It is also possible to first synthesize the design with synplify and then place&route with Quar-
tus.

The make scripts command will generate two project files for Quartus, one for an EDIF flow where
a netlist has been created with synplify and one for a Quartus-only flow. The project files are named
TOP.gpf and TOP_synplify.qpf, where TOP is replaced with the name of the top entity.

The command make quartus will synthesize and place&route the design using a quartus-only flow in
batch mode. The command make quartus-synp will synthesize with synplify and run place&route
with Quartus. Interactive operation is achieved through the command make quartus-launch (quar-
tus-only flow), or make quartus-launch-synp (EDIF flow). Quartus can also be started manually
with quartus TOP.qgpf Or quartus TOP_synplify.qpf.

[_-'HLPMM&M.—LLH
Ein b8 g S popees Fpveseq [me wehs fe -3
Oau " == A s@ewCc r¥mE &8 4
[R— EL)] ——— |
3 5
=

e 4 P Tow el e, - 1D b e

mma Ea mmm [TE]
elrcls] | wALUY| Meels] sivele] (] el

] [l

Ttk <l TEw

 Swvtem | gy Lovnoms v J, wwemy B Llwwwwwy 5, Dos 1, lopmesd |
[~—3rH 2] B |
Fon faa o P L e

TABLE 27. Altera Quartus make targets

Make target Description

quartus Synthesize and place&route design with Quartus in batch mode
quartus-clean Remove compiled models and temporary files

guartus-launch Start Quartus interactively using Quartus-only flow
quartus-launch-synp | Start Quartus interactively using EDIF flow

quartus-map Synthesize design with Quartus in batch mode

quartus-synp Synthesize with synplify and place&route with Quartus in batch mode

quartus-prog-fpga Program FPGA in batch mode

TABLE 28. Altera Quartus scripts and files

File Description

TOP.qpf Project file for Quartus-only flow
TOP_synplify.qpf Project file for EDIF flow

GRLIB, Jan 2016, Version 1.5.0 37 www.cobham.com/gaisler

GRLIB IP Library

4.7.13 Xilinx ISE

Xilinx ISE is used for Xilinx FPGA targets, and can be used to simulate, synthesize and place&route
a design. It is also possible to first synthesize the design with synplify and the place&route with ISE.
It is generally recommended to use the latest version of ISE. Simulation of GRLIB template designs
using ISIM is supported as of ISE-13.2. The simulator is launched from the project navigator GUI.

The make scripts command will create an XML project file (TOP.xise), useful with ISE-11 and
above. When executing make ise-launch, this XML will be used to launch the ISE project manager.
Synthesis and place&route can also be run in batch mode (preferred option) using make ise for the
XST flow and make ise-synp for synplify flow.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed using make ise-prog-
foga and make ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

When simulating designs that depends on Xilinx macro cells (RAM, PLL, pads), a built-in version of
the Xilinx UNSIM simulation library will be used. The built-in library has reduced functionality, and
only contains the cells used in grlib. The full Xilinx UNISIM library can be installed using make
install-unisim. This will copy the UNISIM files from ISE into grlib. A make distclean must first be
given before the libraries can be used. It is possible to revert to the built-in UNISIM libraries by issu-
ing make remove-unisim. To simulate designs using the Xilinx MIG memory controllers, the
securelP library must first be installed using make install-secureip. The Xilinx UNIMACRO library
can also be installed/removed by using make install-unimacro and make remove-unimacro. Ver-
ilog versions of the above libraries can also be installed using the install targets with a _ver ending.

Note: to install the Xilinx UNISIM/SeurelP/lUNIMACRO files, the variable XILINX must point to
the installation path of ISE. The variable is normally set automatically during installation of ISE.

Note: Installation of secureip depends on the GRLIB_SIMULATOR setting to select encrypted mod-
els for either Aldec or Mentor tools. If the simulator is changed then make install-secureip must be
rerun.

TABLE 29. Xilinx ISE make targets

Make target Description

ise Synthesize and place&route design with XST in batch mode
ise-prec Synthesize and place&route design with Precision in batch mode
ise-synp Synthesize and place&route design with Synplify in batch mode
ise-launch Start project navigator interactively using XST flow
ise-launch-synp Start project navigator interactively using EDIF flow

ise-map Synthesize design with XST in batch mode

ise-prog-fpga Program FPGA on target board using JTAG

ise-prog-fpga-ref Program FPGA on target board with reference bit file
ise-prog-prom Program configuartion proms on target board using JTAG
ise-prog-prom-ref Program configuartion proms with reference bit file
install-unisim Install Xilinx UNISIM libraries into GRLIB

remove-unisim Remove Xilinx UNISIM libraries from GRLIB

install-secureip Install Xilinx SecurelP files into GRLIB

remove-securelP Remove Xilinx SecurelP files from GRLIB

install-unimacro Install Xilinx UNIMACRO files into GRLIB (requires install-unisim)
remove-unimacro Remove Xilinx UNIMACRO files from GRLIB
install-unisim_ver Install Verilog version of UNISIMS into GRLIB
install-xilinxcorelibs_ver Install Verilog version of Xilinx CoreL.ibs into GRLIB
install-secureip_ver Install Verilog version of SecurelP into GRLIB (secureip_ver)

www.cobham.com/gaisler

GRLIB IP Library

TABLE 30. Xilinx ISE scripts and files

File Description

compile.xst XST synthesis include script for all GRLIB files
TOP.xst XST synthesis script for local design

TOP.npl ISE 8 project file for XST flow

TOP.ise ISE 9/10project file for XST flow

TOP.xise ISE 11/12/13 XML project file for XST flow
TOP_synplify.npl ISE 8 project file for EDIF flow

ISE project properties:

The ISE project file is automatically generated based on settings in the current design’s Makefile.
Variables such as device, speed grade and so on are defined in the template design’s Makefile, or
taken from the board directory specified in the template design’s Makefile. A few additional ISE
properties can be set in the board or template design Makefile. If the variables are not assigned then a
default value will be used. Table 31 below lists the ISE project properties that can be overriden by
defining specific variables.

TABLE 31. Xilinx ISE project properties that can be overriden

Property Default value Variable name

Pack 1/0 Registers/ For Inputs and Outputs GRLIB_XIL_PN_Pack Reg_Latches_into_IOBs
Latches into I10Bs

Simulator ISim VHDL/Verilog GRLIB_XIL_PN_Simulator

As an example, to change the default simulator used by the ISE project to ModelSim the following
definition can be added to the design’s Makefile:

GRLIB_XIL_PN_Simulator=Modelsim-SE VHDL

Old and deprecated ISE versions:

The make scripts command also generates .npl project files for the ISE-8 project navigator, for both
EDIF flow where a netlist has been created with synplify and for ISE/XST flow. The project navigator
can be launched with make ise-launch-synp for the EDIF flow, and with make ise-launch8 for the XST
flow. The project navigator can also be started manually with ise TOP.npl or ise TOP_synplify.npl. The
.npl files are intended to be used with ISE 6 - 8.

For ISE-9 and ISE-10, an .ise file will be generated using xtclsh when make ise-launch is given, or
by make TOP.ise. Note that the Xilinx xtclsh application may operate very slowly.

www.cobham.com/gaisler

GRLIB IP Library

4.7.14 Xilinx PlanAhead

Xilinx PlanAhead is supported for Xilinx devices and prototype boards to improve runtime and per-
formance. The GRLIB enviroment allows the user to experiment with diffrent implementation
options to improve design results via runtime option specificed in $(GRLIB)/boards/$(BOARD)/Make-
file.inc. The Xilinx PlanAhead flow should be seen as an extension of GRLIB Xilinx ISE flow.

The make scripts command will create compile scripts for the PlanAhead tool, useful with ISE-14
and above. When executing make planahead-launch, the compile scripts will be used to launch the
PlanAhead project manager. Synthesis and place&route can also be run in batch mode (preferred
option) using make planahead.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed using make ise-prog-
foga and make ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

It is possible to specify Bitgen options to be used in the PlanAhead flow. This is done via the PLA-
NAHEAD_BITGEN environment variable. If this variable is set then the contents will be used to
specify additional Bitgen options in the PlanAhead flow.

TABLE 32. Xilinx PlanAhead specific make targets

Make target Description
planahead Synthesize and place&route design with PlanAhead in batch mode

planahead-launch Start project navigator interactively using planAhead flow

planahead-clean Remove all planAhead generated project files

TABLE 33. Xilinx PlanAhead scripts and files

File Description

compile.planahead | PlanAhead synthesis include script for all GRLIB files

planAhead.tcl PlanAhead script for creating a PlanAhead project and to build the
project.

www.cobham.com/gaisler

GRLIB IP Library

4.7.15 Xilinx Vivado

Xilinx Vivado is the build flow for Xilinx 7 series devices and prototype boards . The GRLIB enviro-
ment allows the user to experiment with diffrent implementation options to improve design results via
runtime option specificed in $(GRLIB)/boards/$(BOARD)/MakeFile.inc.

The make scripts command will create compile scripts for the Vivado tool, useful with ISE-14.2
and above. When executing make vivado-launch, the compile scripts will be used to launch the
Vivado project manager. Synthesis and place&route can also be run in batch mode (preferred option)
using make vivado.

Many Xilinx FPGA boards are supported in GRLIB, and can be re-programmed using make ise-prog-
foga and make ise-prog-prom. The first command will only re-program the FPGA configuration, while
the second command will reprogram the configuration proms (if available). Programming will be
done using the ISE Impact tool in batch mode.

Note: Designs cannot be simulated using XSim in Vivado 2015.4. The software crashes with a seg-
mentation fault.

TABLE 34. Xilinx Vivado specific make targets

Make target Description

vivado Synthesize and place&route design with Vivado in batch mode
vivado-launch Start project navigator interactively using Vivado flow
vivado-clean Remove all Vivado generated project files

vivado-prog-fpga Optional program target for faster programming of the FPGA Device.
This target needs Xilinx EDK/SDK to be installed.

vivado-prog-fpga- | Program reference bitfile (requires installation of GRLIB bitfiles pack-
ref age)

TABLE 35. Xilinx Vivado scripts and files

File Description
compile.vivado Vivado synthesis include script for all GRLIB files
vivado.tcl Vivado script for creating a PlanAhead project and to build the project.

www.cobham.com/gaisler

GRLIB IP Library

4.7.16 Lattice ISP Tools

Note: GRLIB contains support for generating project files for Lattice ISP and starting the tool. Lattice
ISP support is provided as-is and is not kept up to date by Cobham Gaisler.

Implementing GRLIB design on Lattice FPGAs is supported with Synplify for synthesis and the Lat-
tice ISP Lever for place&route. The make isp-synp commmand will automatically synthesize and
place&route a Lattice design. The associated place&route script is provided in bin/route_lattice, and
can be modified if necessary. Supported FPGA families are EC and ECP. On linux, it might be neces-
sary to source the ISP setup script in order to set up necessary paths:

source $ISPLEVER_PATH/ispcpld/bin/setup_lv.sh

TABLE 36. Lattice ISP make targets

Make target Description

isp-synp Synthesize and place&route design with Sunplify in batch mode
isp-clean Remove compiled models and temporary files

isp-prom Create FPGA prom

www.cobham.com/gaisler

GRLIB IP Library

4.7.17 Synthesis with Synopsys Design Compiler

The make scripts command will create a compile.dc file which contains Design Compiler commands
for analyzing all GRLIB files. The compile.dc file can be run manually using ‘dc_shell -f com-
pile.dc’. A script for the local design is created automatically and called TOP_dc.tcl where TOP is the

top entity name:

$ cat leon4mp_dc.tcl

sh mkdir synopsys

set objects synopsys
#set trans_dc_max_depth 1

#set hdlin_seqgmap_sync_search_

#set hdlin_nba rewrite false

depth 1

set hdlin_ff_always_sync_set_reset true

set hdlin_ff_always_async_set_

reset false

#set hdlin_infer_complex_set_reset true

#set hdlin_translate_off_skip_

set suppress_errors VHDL-2285
#set hdlin_use_carry_in true
source compile.dc

analyze -f VHDL -library work
analyze -f VHDL -library work
analyze -f VHDL -library work
analyze -f VHDL -library work
analyze -f VHDL -library work
analyze -f VHDL -library work
elaborate leondmp

text true

config.vhd
ahbrom.vhd
clkgate.vhd
gmod .vhd
gmod_prect.vhd
leondmp.vhd

The script can be run with dc_shell-xg-t via the command make dc. The created script will analyze and
elaborate the local design. Compilation and mapping will not be performed, the script should be seen
as a template only. The default script can be overriden by setting the DCSCRIPT variable. Additional
command line flags can be passed to dc_shell-xg-t via the DCOPT variable.

4.7.18 Synthesis with Cadence RTL Compiler

Note: GRLIB contains support for generating project files for RTL Compiler and starting the tool.
RTL Compiler support is provided as-is and is not tested with the latest versions by Cobham Gaisler.

The make scripts command will create a compile.rc file which contains RTL Compiler commands for
analyzing all GRLIB files. The compile.rc file can be run manually using rc -files compile.rc or through
make rc. A script to analyze and synthesize the local design is created automatically and called TOP.rc

where TOP is the top entity name:
$ cat netcard.rc

set_attribute input_pragma_keyword "cadence synopsys g2c fast ambit pragma"

include compile.rc

read_hdl -vhdl -lib work netcard.vhd

elaborate netcard

write_hdl -generic > netcard_gen.v

The created script will analyze and elaborate the local design, and save it to a Verilog file. Compila-
tion and mapping will not be performed, the script should be seen as a template only.

www.cobham.com/gaisler

GRLIB IP Library

4.7.19 eASIC eTools

GRLIB support for eTools with eASIC Nextreme technology was discontinued in GRLIB version
1.1.0-b4109.

Support for the Nextreme2 technology and eTools 9 can be requested from Cobham Gaisler but is not
included in any of the default GRLIB distributions. To work with eTools 9 the environment variable
ETOOLS_N2X_HOME must be set to the eTools installation directory.

TABLE 37. eASIC Nextreme2 make targets

Make target Description

import-easic-n2x Imports eASIC RTL and IP libraries from eTools into GRLIB.
Requires that the environment variable.

remove-easic-n2x Removes eASIC RTL and IP libraries from GRLIB.

etools-n2x-init Creates a eTools project file. Makes use of the environment vari-

ables TOP, DEVICE, PACKAGE, PNC, SDCFILE, and
GRLIB_NHCPU. The last variable defines the number of avail-
able host CPUs.

etools-n2x-launch Launch eTools DesignNavigator for the current project

etools-n2x-launch-no_iu LauncheTools DesignNavigator for the current project in CLI
mode.

The GRLIB technology map for eASIC Nextreme2 makes extensive use of eASIC’s RAM and pad
generators, and also of wrappers for the DDR2 PHY. When eASIC’s IP library has been imported into
GRLIB (via the import-easic-n2x make target), the normal technology map components (pads, mem-
ory, DDR2 PHY) can be used.

The GRLIB SYNCRAM* components map to both rFiles and bRAMSs. The conditions for selecting
between these RAM types may need to be adjusted for each design in order to not over-utilize one or
the other. The selection between rFiles and bRAMs is made with the function n2x_use_rfile(..) that is
defined in the file lib/techmap/nextreme2/memory_n2x_package.vhd.

The technology map also includes a clock generator map for eASIC PLLs. However it is strongly rec-
ommended to use eASIC’s IP generators instead and directly instantiate the Nextreme2 PLLs in the
design.

www.cobham.com/gaisler

GRLIB IP Library

4.8

XGrlib graphical implementation tool

4.8.1 Introduction

NOTE: Some template designs require commands to be issued to install special libraries or to gener-
ate parts of the design. These special commands are not available in XGrlib and must instead be given
via the command line interface.

XGrlib serves as a graphical front-end to the makefile system described in the previous chapters. It is
written in tcl/tk, using the Visual-tcl (vtcl) GUI builder. XGrlib allows to select which CAD tools will
be used to implement the current design, and how to run them. XGrlib should be started in a directory
with a GRLIB design, using make xgrlib. Other make variables can also be set on the command line,
as described earlier:

make xgrlib SYNPLIFY=synplify_pro GRLIB="../..”"

Since XGrlib uses the make utility, it is necessary that all used tools are in the execution path of the
used shell. The tools are divided into three categories: simulation, synthesis and place&route. All
tools can be run in batch mode with the output directed to the XGrlib console, or launched interac-
tively through each tool’s specific GUI. Below is a figure of the XGrlib main window:

[l GRLIE Implementation Tool <Z= (o] =
File
Sl xconfig
Modelsim | Run | _| Batch Clean Build | clean all scripts

distclean Quit

Synplify | Run | I Batch Clean Project: IIeDnSmp
Tech: Ivinexz
~Place & route
Hone | — | _{ Batch Clean Device: IchvSDDD—fg6?6—4
Board: Igr—pci—chv

— Console

OpEncores Y
contrib
micron
openchip
tmtc
work
testhench. mpf
leon3mp_synplify. prj
leon3mp. do
leon3mp. rc
leon3mp. xst
make [1]: Leaving directory * /home/jiri/ibm/vhdl/grlib/designs/leon3mp’

e D—

4]

Figure 4. XGrlib main window

4.8.2 Simulation

The simulator type can be selected through the left menu button in the frame marked ‘Simulation’.
There are seven options available: modelsim, ncsim, GHDL, libero, riviera, active-hdl, and active-hdl
batch. Once the simulator has been selected, the design can be compiled by pressing the green ‘Build’
button. The simulator can then be launched interactively by pressing the ‘Run’ button. If the ‘Batch’
check-button has been set, the “‘Run’ button will run the default test bench in batch mode with the out-
put displayed in the console frame. The ‘Clean’ button will remove all generated file for the selected
tool.

Note: on windows/cygwin platforms, launching modelsim interactively can fail due to conflict of cyg-
win and modelsim tcl/tk libraries.

www.cobham.com/gaisler

GRLIB IP Library

4.8.3 Synthesis

The synthesis tool is selected through the menu button in the frame labeled with ‘Synthesis’. There
are five possibilities: Synplify, Altera Quartus, Xilinx ISE/XST, Mentor Precision and Actel Libero.
The “Batch’ check-button defines if synthesis will be run in batch mode or if the selected tool will be
launched interactively. The selected tool is started through the ‘Run’ button.

If a tool is started interactively, is automatically loads a tool-specific project file for the current
design. It is then possible to modify the settings for the project before synthesis is started. Only one
tool should be started at a time to avoid /O conflicts. The ‘Clean’ button in the *Synthesis’ frame will
remove all generated file for the selected synthesis tool.

Note that the Libero tool actually performs both simulation, synthesis and place&route. | has been
added to the ‘Synthesis’ menu for convenience.

4.8.4 Place & Route

Place & route is supported for three FPGA tool-chains: Actel Designer, Altera Quartus and Xilinx
ISE. Selecting the tool-chain is done through the menu button in the frame labeled ‘Place & Route’.
Again, the ‘Batch’ check-button controls if the tool-chain will be launched interactively or run in
batch mode. Note that the selection of synthesis tool affects on how place&route is performed. For
instance: if synplify has been selected for synthesis and the Xilinx ISE tool is launched, it will use a
project file where the edif netlist from synplify is referenced. If the XST synthesis tool has been
selected instead, the .ngc netlist from XST would have been used.

The ‘Clean’ button in the ‘Place&Route’ frame will remove all generated file for the selected
place&route tool.

4.8.5 Additional functions

Cleaning

The ‘Clean’ button in each of the three tool frames will remove all generated files for selected tool.
This make it possible to for instance clean and rebuild a simulation model without simultaneously
removing a generated netlist. Generated files for all tools will be removed when the “clean all” button
is pressed. This will however not removed compile scripts and project files. To remove these as well,
use the “distclean’ button.

Generating compile scripts

The compile scripts and project files are normally automatically generated by the make utility when
needed by a tool. They can also be created directly through the “scripts’ button.

Xconfig

If the local design is configured through xconfig (leon3 systems), the xconfig tool can be launched by
pressing the ‘xconfig’ button. The configuration file (config.vhd) is automatically generated if xcon-
fig is exited by saving the new configuration.

FPGA PROM programming

The button ‘PROM prog’ will generate FPGA prom files for the current board, and program the con-
figuration proms using JTAG. This is currently only supported on Xilinx-based boards. The configu-
ration prom must be reloaded by the FPGA for the new configuration to take effect. Some boards has
a special reload button, while others must be power-cycled.

www.cobham.com/gaisler

GRLIB IP Library

3)
5.1

5.2

GRLIB Design concept

Introduction

GRLIB is a collection of reusable IP cores, divided on multiple VHDL libraries. Each library pro-
vides components from a particular vendor, or a specific set of shared functions or interfaces. Data
structures and component declarations to be used in a GRLIB-based design are exported through
library specific VHDL packages.

GRLIB is based on the AMBA AHB and APB on-chip buses, which is used as the standard intercon-
nect interface. The implementation of the AHB/APB buses is compliant with the AMBA-2.0 specifi-
cation, with additional ‘sideband’ signals for automatic address decoding, interrupt steering and
device identification (a.k.a. plug&play support). The AHB and APB signals are grouped according to
functionality into VHDL records, declared in the GRLIB VHDL library. The GRLIB AMBA package
source files are located in lib/grlib/amba.

All GRLIB cores use the same data structures to declare the AMBA interfaces, and can then easily be
connected together. An AHB bus controller and an AHB/APB bridge are also available in the GRLIB
library, and allows to assemble quickly a full AHB/APB system.

AMBA AHB on-chip bus

5.2.1 General

The AMBA Advanced High-performance Bus (AHB) is a multi-master bus suitable to interconnect
units that are capable of high data rates, and/or variable latency. A conceptual view is provided in fig-
ure 5. The attached units are divided into master and slaves, and controlled by a global bus arbiter.

MASTER 1 MASTER 2 MASTER 3

el i
I

SLAVE 1 SLAVE 2

Figure 5. AMBA AHB conceptual view

Since the AHB bus is multiplexed (no tristate signals), a more correct view of the bus and the attached
units can be seen in figure 6. Each master drives a set of signals grouped into a VHDL record called
ahbmo. The output record of the current bus master is selected by the bus multiplexers and sent to the
input record (ahbsi) of all AHB slaves. The output record (ahbso) of the active slave is selected by the
bus multiplexer and forwarded to all masters. A combined bus arbiter, address decoder and bus multi-
plexer controls which master and slave are currently selected.

www.cobham.com/gaisler

GRLIB IP Library

r— - — 7
| |
» MASTER1 ahbmo(1) i |
ahbmo(2) | | ahbsi SLAVE | ambsoly
I |
| |
»| MASTER 2 | |
| BUS ARBITER, | 14 SLAVE 2 |_ahbso(2)
MULTIPLEXER,
| "¢ DECODER |
| |
» MASTERS3 ahbmo(3) |
| |
ahbmi | |
| i
| |
| |
L - — — 41

Figure 6. AHB inter-connection view

5.2.2 AHB master interface

The AHB master inputs and outputs are defined as VHDL record types, and are exported through the
AMBA package in the GRLIB library:

-- AHB master inputs

type ahb_mst_in_type is record

hgrant : std_logic_vector(0 to NAHBMST-1); -- bus grant

hready : std_ulogic; -- transfer done

hresp : std_logic_vector(l downto 0); -- response type

hrdata : std_logic_vector(31 downto 0); -- read data bus

hirqg : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus

end record;

-- AHB master outputs

type ahb_mst_out_type is
hbusreq :
hlock
htrans
haddr
hwrite
hsize
hburst
hprot
hwdata
hirqg
hconfig
hindex

end record;

record
std_ulogic; -- bus request
: std_ulogic; -- lock request

: std_logic_vector(l downto 0); -- transfer type
: std_logic_vector(31 downto 0); -- address bus (byte)

: std_ulogic; -- read/write

: std_logic_vector(2 downto 0); -- transfer size

: std_logic_vector(2 downto 0); -- burst type

: std_logic_vector(3 downto 0); -- protection control

: std_logic_vector(31 downto 0); -- write data bus
- std_logic_vector(NAHBIRQ-1 downto 0);-- interrupt bus
: ahb_config_type; -- memory access reg.

integer range 0 to NAHBMST-1; -- diagnostic use only

The elements in the record types correspond to the AHB master signals as defined in the AMBA 2.0
specification, with the addition of three sideband signals: HIRQ, HCONFIG and HINDEX. A typical
AHB master in GRLIB has the following definition:

www.cobham.com/gaisler

GRLIB IP Library

library grlib;

use grlib.amba.all;
library ieee;

use ieee.std_logic.all;

entity ahbmaster is

generic (
hindex : integer := 0); -- master bus index
port (
reset in std_ulogic;
clk in std_ulogic;
ahbmi : in ahb_mst_in_type; -- AHB master inputs
ahbmo : out ahb_mst_out_type -- AHB master outputs
):
end entity;

The input record (AHBMI) is routed to all masters, and includes the bus grant signals for all masters
in the vector AHBMI.HGRANT. An AHB master must therefore use a generic that specifies which
HGRANT element to use. This generic is of type integer, and typically called HINDEX (see example

above).

5.2.3 AHB slave interface

Similar to the AHB master interface, the inputs and outputs of AHB slaves are defined as two VHDL

records types:

-- AHB slave inputs
type ahb_ slv in_type is record

hsel : std_logic_vector(0 to NAHBSLV-1); -- slave select
haddr : std_logic_vector(31 downto 0); -- address bus (byte)
hwrite : std_ulogic; -- read/write
htrans : std_logic_vector(l downto 0); -- transfer type
hsize : std_logic_vector(2 downto 0); -- transfer size
hburst : std_logic_vector(2 downto 0); -- burst type
hwdata : std_logic_vector(31 downto 0); -- write data bus
hprot : std_logic_vector(3 downto 0); -- protection control
hready : std_ulogic; -- transfer done
hmaster : std_logic_vector(3 downto 0); -- current master
hmastlock : std _ulogic; -- locked access
hbsel : std_logic_vector(0 to NAHBCFG-1); -- bank select

hirq : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus

end record;

-- AHB slave outputs
type ahb_slv_i out _type is record

hready : std_ulogic; -- transfer done

hresp - std_logic_vector(l downto 0); -- response type
hrdata : std_logic_vector(31 downto O) -- read data bus
hsplit : std_logic_vector(15 downto 0); -- split completion
hirg : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
hconfig : ahb_config_type; -- memory access reg.
hindex : integer range 0 to NAHBSLV-1; -- diagnostic use only

end record;

The elements in the record types correspond to the AHB slaves signals as defined in the AMBA 2.0
specification, with the addition of four sideband signals: HSEL, HIRQ, HCONFIG and HINDEX. A
typical AHB slave in GRLIB has the following definition:

library grlib;

use grlib.amba.all;

library ieee;

use ieee.std_logic.all;

entity ahbslave is

generic (

hindex : integer := 0); -- slave bus index
port (

reset in std_ulogic;

clk in std_ulogic;

abhsi in ahb_slv_in_type; -- AHB slave inputs
) ahbso : out ahb_slv_out_type -- AHB slave outputs

end entity;

The input record (ahbsi) is routed to all slaves, and include the select signals for all slaves in the vec-
tor ahbsi.hsel. An AHB slave must therefore use a generic that specifies which hsel element to use.
This generic is of type integer, and typically called HINDEX (see example above).

www.cobham.com/gaisler

GRLIB IP Library

5.2.4 AHB bus control

GRLIB AMBA package provides a combined AHB bus arbiter (AHBCTRL), address decoder and
bus multiplexer. It receives the ahbmo and ahbso records from the AHB units, and generates ahbmi
and ahbsi as indicated in figure 6. The bus arbitration function will generate which of the
ahbmi.hgrant elements will be driven to indicate the next bus master. The address decoding function
will drive one of the ahbsi.hsel elements to indicate the selected slave. The bus multiplexer function
will select which master will drive the ahbsi signal, and which slave will drive the ahbmo signal.

5.2.5 AHB bus index control

The AHB master and slave output records contain the sideband signal HINDEX. This signal is used to
verify that the master or slave is driving the correct element of the ahbso/ahbmo buses. The generic
HINDEX that is used to select the appropriate hgrant and hsel is driven back on ahbmo.hindex and
ahbso.hindex. The AHB controller then checks that the value of the received HINDEX is equal to the
bus index. An error is issued dunring simulation if a missmatch is detected.

5.2.6 Support for wide AHB data buses

5.2.6.1 Overview

The cores in GRLIB and the GRLIB infrastructure can be configured to support an AMBA AHB data
bus width of 32, 64, 128, or 256 bits. The default AHB bus width is 32 bits and AHB buses with data
vectors having widths over 32 bits will in this section be referred to as wide AHB buses.

Changing the AHB bus width can increase performance, but may also increase the area requirements
of a design, depending on the synthesis tool used and the type of cores instantiated. Manual modifica-
tion of the GRLIB CONFIG package is required to enable support for wide AHB buses. Alternatively,
a local version of the GRLIB CONFIG package can be placed in the current template design, overrid-
ing the settings in the global GRLIB CONFIG package.

When modifying the system's bus width, care should be taken to verify that all cores have been instan-
tiated with the correct options with regards to support for wide buses.

Note that the APB bus in GRLIB will always be 32-bits, regardless of the AHB data bus width.

5.2.6.2 Implementation of support for wide AHB buses

To support wide buses, the AHB VHDL records that specify the GRLIB AMBA AHB interface have
their data vector lengths defined by a constant, CFG_AHBDW, defined in the GRLIB CONFIG
VHDL package.

Using a wide AHB bus places additional requirements on the cores in a design; The cores should
drive the extra positions in the AHB data vector in order to minimize the amount of undriven signals
in the design, and to allow synthesis tool optimisations for cores that do not support AMBA accesses
larger than word accesses. The cores are also required to select and drive the applicable byte lanes,
depending on access size and address.

In order to minimize the amount of undriven signals, all GRLIB AHB cores drive their AHB data vec-
tor outputs via a subprogram, ahbdrivedata(..), defined in the GRLIB AMBA VHDL package. The
subprogram replicates its input so that the whole AHB data vector is driven. Since data is present on
all byte lanes, the use of this function also ensures that data will be present on the correct byte lanes.

The AMBA 2.0 Specification requires that cores select their data from the correct byte lane. For
instance, when performing a 32-bit access in a system with a 64-bit wide bus, valid data will be on
positions 63:32 of the data bus if bit 2 of the address is 0, otherwise the valid data will be on positions
31:0. In order to ease adding support for variable buses, the GRLIB AMBA VHDL package includes
subprograms, ahbread*(...), for reading the AMBA AHB data vectors, hereafter referred to as AHB
read subprograms. These subprograms exists in two variants; The first variant takes an address argu-
ment so that the subprogram is able to select the valid byte lanes of the data vector. This functionality
is not always enabled, as will be explained below. The second variant does not require the address
argument, and always returns the low slice of the AHB data vector.

Currently the majority of the GRLIB AHB cores use the functions without the address argument, and
therefore the cores are only able to read the low part of the data vector. The cores that only read the
low part of the AHB data vector are not fully AMBA 2.0 compatible with regard to wide buses. How-
ever, this does not affect the use of a wide AHB bus in a GRLIB system, since all GRLIB cores places

www.cobham.com/gaisler

GRLIB IP Library

valid data on the full AHB data vector. As adoption of wide buses become more widespread, the cores
will be updated so that they are able to select the correct byte lanes.

The GRLIB AHB controller core, AHBCTRL, is a central piece of the bus infrastructure. The AHB
controller includes a multiplexer of the width defined by the AMBA VHDL package constant
AHBDW. The core also has a generic that decides if the controller should perform additional AMBA
data multiplexing. Data multiplexing is discussed in the next section.

5.2.6.3 AMBA AHB data multiplexing

Almost all GRLIB cores drive valid data on all lanes of the data bus, some exceptions exist, such as
the cores in the AMBA Test Framework). Since the ahbdrivedata(..) subprogram duplicates all data
onto the wider bus, all cores will be compliant to the AMBA standard with regards to placing valid
data on the correct lane in the AHB data vector.

As long as there are only GRLIB cores in a design, the cores can support wide AHB buses by only
reading the low slice of the AHB data vectors, which is the case for most cores, as explained in the
section above. However, if a core that only drives the required part of the data vector is introduced in
a design there is a need for support to allow the GRLIB cores to select the valid part of the data.

The current implementation has two ways of accomplishing this:

Set the ACDM generic of AHBCTRL to 1. When this option is enabled the AHB controller will check
the size and address of each access and propagate the valid part of the data on the entire AHB data bus
bus. The smallest portion of the slice to select and duplicate is 32-bits. This means that valid data for
a a byte or halfword access will not be present on all byte lanes, however the data will be present on
all the required byte lanes.

Set the CFG_AHB_ACDM constant to 1 in the GRLIB CONFIG VHDL package. This will make the
AHB read subprograms look at the address and select the correct slice of the incoming data vector. If
a core uses one of the AHB read subprograms that does not have the address argument there will be a
failure asserted. If CFG_AHB_ACDM is 0, the AHB read subprograms will return the low slice of
the data vector. With CFG_AHB_ACDM set to 1, a core that uses the subprograms with the correct
address argument will be fully AMBA compliant and can be used in non-GRLIB environments with
bus widths exceeding 32 bits.

Note that it is unnecessary to enable both of these options in the same system.

5.2.6.4 IP cores with support for wide buses

Several cores in the IP library make use of the wide buses, see the core documentation in the GRLIB
IP Cores User’s Manual to determine the state of wide bus support for specific cores. All cores in
GRLIB can be used in a system with wide AHB buses, however they do not all exploit the advantages
of a wider bus.

5.2.6.5 GRLIB CONFIG Package

The GRLIB configuration package contains a constant the controls the maximum allowed AHB bus
width in the system, see section 5.6.

5.2.6.6 Issues with wide AHB buses

A memory controller may not be able to respond all access sizes. With the current scheme the user of
the system must keep track of which areas that can be accessed with accesses larger then word
accesses. For instance, if SWVGACTRL is configured to use 4WORD accesses and the designs has a
DDR2SPA core and a MCTRL core in the system, the SVGACTRL will only receive correct data if
the framebuffer is placed in the DDR2 memory area.

Special care must be taken when using wide buses so that the core specific settings for wider buses
matches the intended use for the cores. Most cores are implemented so that they include support for
handling access sizes up to AHBDW.

www.cobham.com/gaisler

GRLIB IP Library

5.3

AHB plug&play configuration

5.3.1 General

The GRLIB implementation of the AHB bus includes a mechanism to provide plug&play support.
The plug&play support consists of three parts: identification of attached units (masters and slaves),
address mapping of slaves, and interrupt routing. The plug&play information for each AHB unit con-
sists of a configuration record containing eight 32-bit words. The first word is called the identification
register and contains information on the device type and interrupt routing. The last four words are
called bank address registers, and contain address mapping information for AHB slaves. The remain-
ing three words are currently not assigned and could be used to provide core-specific configuration
information.

31 24 23 121110 9 5 4 0
Identification Register 00 VENDOR ID DEVICE ID 00 VERSION IRQ
04 USER-DEFINED
08 USER-DEFINED
ocC USER-DEFINED
BARO 10 ADDR 00 |P|C MASK TYPE
BAR1 14 ADDR 00 |P|C MASK TYPE
Bank Address Registers
BAR2 18 ADDR 00 |P|C MASK TYPE
BAR3 1C ADDR 00 |P|C MASK TYPE
31 201918 17 16 15 4 3 0

P = Prefetchable TYPE
C = Cacheable 0001 = APB I/O space

0010 = AHB Memory space
0011 = AHB I/O space

Figure 7. AHB plug&play configuration layout

The plug&play information for all attached AHB units appear as a read-only table mapped on a fixed
address of the AHB, typically at OXFFFFF000. The configuration records of the AHB masters appear
in OXFFFFF000 - OxFFFFF800, while the configuration records for the slaves appear in OxFFFFF800
- OXFFFFFFFC. Since each record is 8 words (32 bytes), the table has space for 64 masters and 64
slaves. A plug&play operating system (or any other application) can scan the configuration table and
automatically detect which units are present on the AHB bus, how they are configured, and where
they are located (slaves).

The top four words of the plug&play area (OxFFFFFFFO - OxFFFFFFFF) may contain device specific
information such as GRLIB build ID and a (SoC) device ID. If present, this information shadows the
bank address registers of the last slave record, limiting the number of slaves on one bus to 63. All sys-
tems that use the GRLIB AHB controller have the library’s build ID in the most siginificant half-
word, and a (SoC) device ID in the least signifcant half-word, of the word at address OxFFFFFFFO.
The contents of the top four words is described in the AHB controller’s IP core manual.

The configuration record from each AHB unit is sent to the AHB bus controller via the HCONFIG
signal. The bus controller creates the configuration table automatically, and creates a read-only mem-
ory area at the desired address (default OXFFFFF000). Since the configuration information is fixed, it
can be efficiently implemented as a small ROM or with relatively few gates. A debug module, present
within the AHB bus controller, can be used to print the configuration table to the console during sim-
ulation, which is useful for debugging. A typical example is provided below:

www.cobham.com/gaisler

GRLIB IP Library

VSIM 1> run

LEON3 Actel PROASIC3-1000 Demonstration
GRLIB Version 1.0.16, build 2460

Target technology: proasic3 , memory 1|
ahbctrl: AHB arbiter/multiplexer rev 1
ahbctrl: Common 1/0 area disabled
ahbctrl: AHB masters: 2, AHB slaves: 8
ahbctrl: Configuration area at Oxfffff0
ahbctrl: mstO: Gaisler Research
ahbctrl: mstl: Gaisler Research
ahbctrl: slv0: European Space Agency
ahbctrl: memory at 0x00000000,
ahbctrl: memory at 0x20000000, si
ahbctrl: memory at 0x40000000,
ahbctrl: Gaisler Research
ahbctrl: memory at 0x80000000, si
ahbctrl: Gaisler Research
ahbctrl: memory at 0x90000000, si
apbctrl: APB Bridge at 0x80000000 rev 1
apbctrl: slv0: European Space Agency
apbctrl: 1/0 ports at 0x80000000,
apbctrl: Gaisler Research
apbctrl: 1/0 ports at 0x80000100,
apbctrl: Gaisler Research
apbctrl: 1/0 ports at 0x80000200,
apbctrl: Gaisler Research
apbctrl: 1/0 ports at 0x80000300,
apbctrl: Gaisler Research
apbctrl: 1/0 ports at 0x80000700,
apbctrl: Gaisler Research
apbctrl: 1/0 ports at 0x80000b00,
grgpioll: 8-bit GPIO Unit rev O
gptimer3: GR Timer Unit rev 0, 8-bit sc
irgmp: Multi-processor Interrupt Contro
apbuartl: Generic UART rev 1, fifo 1, i
ahbuart7: AHB Debug UART rev O

dsu3_2: LEON3 Debug support unit + AHB
leon3_0: LEON3 SPARC V8 processor rev 0
leon3_0: icache 1*2 kbyte, dcache 1*2 k

slvl:

slv2:

slvl:
slv2:
slv3:
slv7:

slvll:

B R i R o R R o o A . E R S e e e R 5

5.3.2 Device identification

design

ibrary: proasic3

00, 4 kbyte

Leon3 SPARC V8 Processor
AHB Debug UART

Leon2 Memory Controller

ze 512 Mbyte

AHB/APB Bridge

ze 1 Mbyte

Leon3 Debug Support Unit
ze 256 Mbyte

Leon2 Memory Controller
size 256 byte

Generic UART

size 256 byte

size 512 Mbyte, cacheable, prefetch
size 1024 Mbyte, cacheable, prefetch

Multi-processor Interrupt Ctrl.

size 256 byte
Modular Timer Unit
size 256 byte
AHB Debug UART
size 256 byte

General Purpose 1/0 port

size 256 byte
aler, 2 32-bit timers,
Iler rev 3, #cpu 1
rq 2
Trace Buffer, 1 kbytes

byte

irg 8

The Identification Register contains three fields to identify uniquely an attached AHB unit: the ven-
dor ID, the device ID, and the version number. The vendor ID is a unique number assigned to an IP
vendor or organization. The device ID is a unique number assigned by a vendor to a specific IP core.
The device ID is not related to the core’s functionality. The version number can be used to identify

(functionally) different versions of the unit.

The vendor IDs are declared in a package located at lib/grlib/amba/devices.vhd. Vendor IDs are pro-
vided by Cobham Gaisler. The following ID’s are currently assigned:

Vendor ID

Gaisler Research 0x01
Pender Electronic Design 0x02
European Space Agency 0x04
Astrium EADS 0x06
OpenChip.org 0x07
OpenCores.org 0x08
Various contributions 0x09
DLR Ox0A
Eonic BV 0x0B
Telecom ParisTech 0x0C
DTU Space 0x0D

TABLE 38. Vendor 1D assignment

www.cobham.com/gaisler

GRLIB IP Library

Vendor ID
Barcelona Supercomputing Center 0xOE
Radionor OxO0F
Gleichmann Electronics 0x10
Menta Ox11
Sun Microsystems 0x13
Movidia 0x14
Orbita 0x17
Siemens AG Ox1A
Microsemi/Actel Corporation OxAC
TU Braunschweig C3E 0xC3
CBK PAN 0xC8
Caltech OxCA
Embeddit OxEA
NASA GSFC OxFC

TABLE 38. Vendor 1D assignment

Vendor ID 0x00 is reserved to indicate that no core is present. Unused slots in the configuration table
will have Identification Register set to 0. IP cores added to GRLIB must only use vendor ID 0x09 to
prevent that the user IP core is detected as an IP core from another vendor. Vendor IDs for organiza-
tions can be requested via e-mail to support@gaisler.com.

5.3.3 Address decoding

The address mapping of AHB slaves in GRLIB is designed to be distributed, i.e. not rely on a shared
static address decoder which must be modified as soon as a slave is added or removed. The GRLIB
AHB bus controller, which implements the address decoder, will use the configuration information
received from the slaves on HCONFIG to automatically generate the slave select signals (HSEL).
When a slave is added or removed during the design, the address decoding function is automatically
updated without requiring manual editing.

The AHB address range for each slave is defined by its Bank Address Registers (BAR). Address
decoding is performed by comparing the 12-bit ADDR field in the BAR with part of the AHB address
(HADDR). There are two types of banks defined for the AHB bus: AHB memory bank and AHB 1/O
bank. The AHB address decoding is done differently for the two types.

For AHB memory banks, the address decoding is performed by comparing the 12-bit ADDR field in
the BAR with the 12 most significant bits in the AHB address (HADDR(31:20)). If equal, the corre-
sponding HSEL will be generated. This means that the minimum address range occupied by an AHB
memory bank is 1 MByte. To allow for larger address ranges, only the bits set in the MASK field of
the BAR are compared. Consequently, HSEL will be generated when the following equation is true:

((BAR.ADDR xor HADDR[31:20]) and BAR.MASK) = 0O

As an example, to decode a 16 MByte AHB memory bank at address 0x24000000, the ADDR field
should be set to 0x240, and the MASK to OxFFO. Note: if MASK = 0, the BAR is disabled rather than
occupying the full AHB address range.

For AHB 1/0 banks, the address decoding is performed by comparing the 12-bit ADDR field in the
BAR with 12 bits in the AHB address (HADDR(19:8)). If equal, the corresponding HSEL will be
generated. This means that the minimum address range occupied by an AHB 1/O bank is 256 Byte. To
allow for larger address ranges, only the bits set in the MASK field of the BAR are compared. Conse-
quently, HSEL will be generated when the following equation is true:

((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

The 12 most significant bits in the AHB address (HADDR(31:20)) are always fixed to OXFFF, effec-
tively placing all AHB 1/0O banks in the OXFFF00000-0xFFFFEFFF address space. As an example, to
decode an 4 kByte AHB 1/0 bank at address OxFFF24000, the ADDR field should be set to 0x240,

www.cobham.com/gaisler

mailto:support@gaisler.com

GRLIB IP Library

and the MASK to OxFFO0. Note: if MASK = 0, the BAR is disabled rather than occupying the full
AHB /0 address range.

The AHB slaves in GRLIB define the value of their ADDR and MASK fields through generics. This
allows to choose the address range for each slave when it is instantiated, without having to modify a
central decoder or the slave itself. Below is an example of a component declaration of an AHB RAM
memory, and how it can be instantiated:

component ahbram

generic (
hindex : integer := O; -- AHB slave index
haddr > integer := 0;
hmask o integer := 16#fff#);
port (
rst - in std_ulogic;
clk - in std_ulogic;
ahbsi > in ahb_slv_in_type; -- AHB slave input
ahbso : out ahb_slv_out_type); -- AHB slave output

end component;

ram0 : ahbram
generic map (hindex => 1, haddr => 16#240#, hmask => 16#FFO0#)
port map (rst, clk, ahbsi, ahbso(1));

An AHB slave can have up to four address mapping registers, thereby decode four independent areas
in the AHB address space. HSEL is asserted when any of the areas is selected. To know which partic-
ular area was selected, the ahbsi record contains the additional bus signal HBSEL(0:3). The elements
in HBSEL (0:3) are asserted if the corresponding to BAR(0-3) caused HSEL to be asserted. HBSEL is
only valid when HSEL is asserted. For example, if BAR1 caused HSEL to be asserted, the HBSEL (1)
will be asserted simultaneously with HSEL.

5.3.4 Cacheability

In processor-based systems without an MMU, the cacheable areas are typically defined statically in
the cache controllers. The LEON processors build the cachebility table automatically during synthe-
sis, using the cacheability information in the AHB configuration records. In this way, the cacheability
settings always reflect the current configuration.

For systems with an MMU, the cacheability information can be read out by from the configuration
records through software. This allows the operating system to build an MMU page table with proper
cacheable-bits set in the page table entries.

5.3.5 Interrupt steering

GRLIB provides a unified interrupt handling scheme by adding 32 interrupt signals (HIRQ) to the
AHB bus, both as inputs and outputs. An AHB master or slave can drive as well as read any of the
interrupts.

The output of each master includes all 32 interrupt signals in the vector ahbmo.hirg. An AHB master
must therefore use a generic that specifies which HIRQ element to drive. This generic is of type inte-
ger, and typically called HIRQ (see example below).

component ahbmaster is

generic (
hindex : integer := O; -- master index
hirqg : integer := 0); -- interrupt index
port (
reset > in std_ulogic;
clk - in std_ulogic;
hmsti > in ahb_mst_in_type; -- AHB master inputs
hmsto : out ahb_mst_out_type -- AHB master outputs

end component;

masterl : ahbmaster
generic map (hindex => 1, hirqg => 1)
port map (rst, clk, hmsti, hmsto(1));

The same applies to the output of each slave which includes all 32 interrupt signals in the vector
ahbso.hirg. An AHB slave must therefore use a generic that specifies which HIRQ element to drive.
This generic is of type integer, and typically called HIRQ (see example below).

component ahbslave
generic (
hindex : integer := O; -- slave index

www.cobham.com/gaisler

GRLIB IP Library

hirg : integer := 0); -- interrupt index
port (
rst - in std_ulogic;
clk > in std_ulogic;
hslvi > in ahb_slv_in_type; -- AHB slave inputs
hslvo : out ahb_slv_out_type); -- AHB slave outputs

end component;

slave2 : ahbslave
generic map (hindex => 2, hirqg => 2)
port map (rst, clk, hslvi, hslvo(1));

The AHB bus controller in the GRLIB provides interrupt combining. For each element in HIRQ, all
the ahbmo.hirq signals from the AHB masters and all the ahbso.hirg signals from the AHB slaves are
logically OR-ed. The combined result is output both on ahbmi.hirq (routed back to the AHB masters)
and ahbsi.hirq (routed back to the AHB slaves). Consequently, the AHB masters and slaves share the
same 32 interrupt signals.

An AHB unit that implements an interrupt controller can monitor the combined interrupt vector
(either ahbsi.hirg or ahbmi.hirg) and generate the appropriate processor interrupt.

www.cobham.com/gaisler

GRLIB IP Library

5.4

AMBA APB on-chip bus

5.4.1 General

The AMBA Advanced Peripheral Bus (APB) is a single-master bus suitable to interconnect units of
low complexity which require only low data rates. An APB bus is interfaced with an AHB bus by
means of a single AHB slave implementing the AHB/APB bridge. The AHB/APB bridge is the only
APB master on one specific APB bus. More than one APB bus can be connected to one AHB bus, by
means of multiple AHB/APB bridges. A conceptual view is provided in figure 8.

AHB MASTER 1

AHB MASTER 2

AHB MASTER 3

AHB BUS
CONTROL

A

A

A

AHB BUS

A

y

v

AHB SLAVE 1

AHB SLAVE 2
APB MASTER

I APB BUS

I

I

APB SLAVE 1

APB SLAVE 2

Figure 8. AMBA AHB/APB conceptual view

Since the APB bus is multiplexed (no tristate signals), a more correct view of the bus and the attached
units can be seen in figure 9. The access to the AHB slave input (AHBI) is decoded and an access is
made on APB bus. The APB master drives a set of signals grouped into a VHDL record called APBI
which is sent to all APB slaves. The combined address decoder and bus multiplexer controls which
slave is currently selected. The output record (APBO) of the active APB slave is selected by the bus
multiplexer and forwarded to AHB slave output (AHBO).

www.cobham.com/gaisler

GRLIB IP Library

AHBI APBI APBO(1)

v

SLAVE 1

A 4

APBO(2

SLAVE 2

v

AHB SLAVE
APB MASTER

AHBO

Figure 9. APB inter-connection view

5.4.2 APB slave interface

The APB slave inputs and outputs are defined as VHDL record types, and are exported through the
TYPES package in the GRLIB AMBA library:

-- APB slave inputs
type apb_ slv in_type is record

psel . std _logic_ vector(O to NAPBSLV-1); -- slave select

penable : std_ulogic -- strobe

paddr : std_loglc_vector(Sl downto 0); -- address bus (byte)
pwrite : std_ulogic; -- write

pwdata : std_logic_vector(31 downto 0); -- write data bus

pirg : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt result bus

end record

-- APB slave outputs
type apb_. slv out_type is record

prdata : std_logic_vector(31 downto 0); -- read data bus
pirqg : std_logic_vector(NAHBIRQ-1 downto 0); -- interrupt bus
pconfig : apb_config_type; -- memory access reg.
pindex : integer range 0 to NAPBSLV -1; -- diag use only

end record;

The elements in the record types correspond to the APB signals as defined in the AMBA 2.0 specifi-
cation, with the addition of three sideband signals: PCONFIG, PIRQ and PINDEX. A typical APB
slave in GRLIB has the following definition:

library grlib;

use grlib.amba.all;

library ieee;

use ieee.std_logic.all;

entity apbslave is

generic (
pindex : integer := 0); -- slave bus index
port (
rst : in std_ulogic;
clk : in std_ulogic;
apbi > in apb_slv_in_type; -- APB slave inputs
apbo : out apb_slv_out_type -- APB slave outputs
):
end entity;

The input record (APBI) is routed to all slaves, and include the select signals for all slaves in the vec-
tor APBI.PSEL. An APB slave must therefore use a generic that specifies which PSEL element to
use. This generic is of type integer, and typically called PINDEX (see example above).

www.cobham.com/gaisler

GRLIB IP Library

5.4.3 AHB/APB bridge

GRLIB provides a combined AHB slave, APB bus master, address decoder and bus multiplexer. It
receives the AHBI and AHBO records from the AHB bus, and generates APBI and APBO records on
the APB bus. The address decoding function will drive one of the APBI.PSEL elements to indicate
the selected APB slave. The bus multiplexer function will select from which APB slave data will be
taken to drive the AHBI signal. A typical APB master in GRLIB has the following definition:

library I1EEE;

use IEEE.std_logic_1164.all;

library grlib;
use grlib.amba.all;

entity apbmst is
generic (

hindex : integer := O; -- AHB slave bus index
)s
port (
rst - in std_ulogic;
clk : in std_ulogic;
ahbi > in ahb_slv_in_type; -- AHB slave inputs
ahbo : out ahb_slv_out_type; -- AHB slave outputs
apbi : out apb_slv_in_type; -- APB master inputs
apbo > in apb_slv_out vector -- APB master outputs
);
end;

5.4.4 APB bus index control

The APB slave output records contain the sideband signal PINDEX. This signal is used to verify that
the slave is driving the correct element of the AHBPO bus. The generic PINDEX that is used to select
the appropriate PSEL is driven back on APBO.PINDEX. The APB controller then checks that the
value of the received PINDEX is equal to the bus index. An error is issued during simulation if a mis-
match is detected.

www.cobham.com/gaisler

GRLIB IP Library

5.5

Identification Register 00 VENDOR ID DEVICE ID cT VERSION IRQ

Bank Address Register 04 ADDR

APB plug&play configuration

5.5.1 General

The GRLIB implementation of the APB bus includes the same type of mechanism to provide
plug&play support as for the AHB bus. The plug&play support consists of three parts: identification
of attached slaves, address mapping, and interrupt routing. The plug&play information for each APB
slave consists of a configuration record containing two 32-bit words. The first word is called the iden-
tification register and contains information on the device type and interrupt routing. The last word is
the bank address register (BAR) and contains address mapping information for the APB slave. Only a
single BAR is defined per APB slave. An APB slave is neither prefetchable nor cacheable.

31 24 23 121110 9 5 4 0

ofofo|o MASK TYPE

31 201918 17 16 15 4 3 0

Figure 10. APB plug&play configuration layout

All addressing of the APB is referenced to the AHB address space. The 12 most significant bits of the
AHB bus address are used for addressing the AHB slave of the AHB/APB bridge, leaving the 20 least
significant bits for APB slave addressing.

The plug&play information for all attached APB slaves appear as a read-only table mapped on a fixed
address of the AHB, typically at Ox---FF000. The configuration records of the APB slaves appear in
0x---FF000 - Ox---FFFFF on the AHB bus. Since each record is 2 words (8 bytes), the table has space
for 512 slaves on a signle APB bus. A plug&play operating system (or any other application) can scan
the configuration table and automatically detect which units are present on the APB bus, how they are
configured, and where they are located (slaves).

The configuration record from each APB unit is sent to the APB bus controller via the PCONFIG sig-
nal. The bus controller creates the configuration table automatically, and creates a read-only memory
area at the desired address (default 0x---FF000). Since the configuration information is fixed, it can
be efficiently implemented as a small ROM or with relatively few gates. A debug module, present
within the APB bus controller, can be used to print the configuration table to the console during simu-
lation, which is useful for debugging

5.5.2 Device identification

The APB bus uses same type of Identification Register as previously defined for the AHB bus.

5.5.3 Address decoding

The address mapping of APB slaves in GRLIB is designed to be distributed, i.e. not rely on a shared
static address decoder which must be modified as soon as a slave is added or removed. The GRLIB
APB master, which implements the address decoder, will use the configuration information received
from the slaves on PCONFIG to automatically generate the slave select signals (PSEL). When a slave
is added or removed during the design, the address decoding function is automatically updated with-
out requiring manual editing.

The APB address range for each slave is defined by its Bank Address Registers (BAR). There is one
type of banks defined for the APB bus: APB 1/0O bank. Address decoding is performed by comparing
the 12-bit ADDR field in the BAR with 12 bits in the AHB address (HADDR(19:8)). If equal, the cor-
responding PSEL will be generated. This means that the minimum address range occupied by an APB
I/0 bank is 256 Byte. To allow for larger address ranges, only the bits set in the MASK field of the
BAR are compared. Consequently, PSEL will be generated when the following equation is true:

((BAR.ADDR xor HADDR[19:8]) and BAR.MASK) = 0

As an example, to decode an 4 kByte AHB 1/O bank at address 0x---24000, the ADDR field should be
set to 0x240, and the MASK to OxFFO. Note that the 12 most significant bits of AHBI.HADDR are

www.cobham.com/gaisler

GRLIB IP Library

5.6

used for addressing the AHB slave of the AHB/APB bridge, leaving the 20 least significant bits for
APB slave addressing.

As for AHB slaves, the APB slaves in GRLIB define the value of their ADDR and MASK fields
through generics. This allows to choose the address range for each slave when it is instantiated, with-
out having to modify a central decoder or the slave itself. Below is an example of a component decla-
ration of an APB 1/0O unit, and how it can be instantiated:

component apbio

generic (

pindex : integer := O;

paddr : integer := 0;

pmask o integer := 16#Fff#);
port (

rst - in std_ulogic;

clk - in std_ulogic;

apbi : in apb_slv_in_type;

apbo : out apb_slv_out_type);

end component;

io0 : apbio
generic map (pindex => 1, paddr => 16#240#, pmask => 16#FFO0#)
port map (rst, clk, apbi, apbo(l1));

5.5.4 Interrupt steering

GRLIB provides a unified interrupt handling scheme by also adding 32 interrupt signals (PIRQ) to the
APB bus, both as inputs and outputs. An APB slave can drive as well as read any of the interrupts.
The output of each slave includes all 32 interrupt signals in the vector APBO.PIRQ. An APB slave
must therefore use a generic that specifies which PIRQ element to drive. This generic is of type inte-
ger, and typically called PIRQ (see example below).

component apbslave

generic (

pindex : integer := O; -- slave index

pirq : integer := 0); -- interrupt index
port (

rst : in std_ulogic;

clk > in std_ulogic;

apbi > in apb_slv_in_type; -- APB slave inputs

apbo : out apb_slv_out_type); -- APB slave outputs

end component;

slave3 : apbslave
generic map (pindex => 1, pirq => 2)
port map (rst, clk, pslvi, pslvo(1));

The AHB/APB bridge in the GRLIB provides interrupt combining, and merges the APB-generated
interrupts with the interrups bus on the AHB bus. This is done by OR-ing the 32-bit interrupt vectors
from each APB slave into one joined vector, and driving the combined value on the AHB slave output
bus (AHBSO.HIRQ). The APB interrupts will then be merged with the AHB interrupts. The resulting
interrupt vector in available on the AHB slave input (AHBSI.HIRQ), and is also driven on the APB
slave inputs (APBI.PIRQ) by the AHB/APB bridge. Each APB slave (as well as AHB slave) thus sees
the combined AHB/APB interrupts. An interrupt controller can then be placed either on the AHB or
APB bus and still monitor all interrupts.

GRLIB configuration package

The location of the global GRLIB CONFIG package is in lib/grlib/stdlib/config.vhd. This file con-
tains the settings for the wide AHB buses, as described in the previous sections, and some additional
global parameters.

This package can be replaced by a local version by setting the variable GRLIB_CONFIG in the
Makefile of a template design to the location of an alternative version. When the simulation and syn-
thesis scripts are built, the alternative CONFIG package will be used instead of the global one. The
the variable GRLIB_CONFIG is modified, the scripts have to be re-built for the new value to take
effect.

The GRLIB configuration package contains the constants listed in table 39.

www.cobham.com/gaisler

GRLIB IP Library

Constant Description

CFG_AHBDW Selects the maximum AHB data width to be used in the system

CFG_AHB_ACDM Enable AMBA compliant data multiplexing in cores that support
this.

GRLIB_CONFIG_ARRAY Array of configuration values that enable different types of func-

tionality in the library. The available values together with short
descriptions can be seen in the file lib/grlib/stdlib/config_-
types.vhd. The available settings are also described in table 40.

TABLE 39. GRLIB configuration package constants

GRLIB_CONFIG_ARRAY(Constant) | Description
grlib_debug_level Controls (simulation) debug output from TECHMAP layer

grlib_debug_mask

grlib_techmap_strict_ram Defines if struct RAM TECHMAP should be used. Otherwise
small (shallow) RAMs may be mapped to inferred technology.
Not supported by all target technologies.

grlib_techmap_testin_extra Expand testin vector to SYNCRAM components with additional
bits (value defines number of additional bits).

grlib_sync_reset_enable_all Add synchronous reset to all registers (requires support in
instantiated IP cores). Synchronization registers will not have
resets added.

Note that IP cores may have VHDL generics that override the
library settings.

grlib_async_reset_enable Add asynchronous reset to all registers (requires support in
instantiated IP cores, see IP core manual). This option must not
be enabled together with grlib_sync_reset_enable_all.

Asynchronous reset will not be used for synchronization regis-
ters and for registers where the reset state depends on external
input signals.

Note that IP cores may have VHDL generics that override the
library settings.

grlib_syncramft_autosel_disable Disables automatic override of ECC implementation in syn-
cramft wrappers (GRLIB-FT only).

grlib_syncram_selftest_enable Enables data monitors on syncram blocks.

grlib_external_testoen Disable testoen muxing in IP cores. Not supported by all IP
cores.

grlib_amba_inc_nirq Increase maximum number of interrupts

Total number of interrupt lines: (32 + grlib_amba_inc_irg*32)
Note: Should be left at 0 at present time. > 32 interrupts is not
supported by all IP cores and it is not supported by the GRLIB
plug&play version 0.

TABLE 40. GRLIB configuration array description

IP core support for settings such as grlib_sync_reset _enable_all and grlib_async_reset_en-
able is described for each IP core in the GRLIB IP Core User’s Manual in the Implementa-
tion / Reset section.

www.cobham.com/gaisler

GRLIB IP Library

5.7

Technology mapping

5.7.1 General

GRLIB provides portability support for both ASIC and FPGA technologies. The support is imple-
mented by means of encapsulation of technology specific components such as memories, pads and
clock buffers. The interface to the encapsulated component is made technology independent, not rely-
ing on any specific VHDL or Verilog code provided by the foundry or FPGA manufacturer. The inter-
face to the component stays therefore always the same. No modification of the design is therefore
required if a different technology is targeted. The following technologies are currently supported by
the TECHMAP.GENCOMP package:

constant inferred : integer := 0;
constant virtex : integer := 1;
constant virtex2 o integer := 2;
constant memvirage : integer := 3;
constant axcel : integer := 4;
constant proasic o integer := 5;
constant atcl8s o integer := 6;
constant altera : integer := 7;
constant umc . integer := 8;
constant rhumc : integer := 9;
constant apa3 : integer := 10;
constant spartan3 o integer := 11;
constant i1hp25 : integer := 12;
constant rhlib18t : integer := 13;
constant virtex4 o integer := 14;
constant lattice : integer := 15;
constant ut25 : integer := 16;
constant spartan3e o integer := 17;
constant peregrine : integer := 18;
constant memartisan : integer := 19;
constant virtex5 o integer := 20;
constant customl : integer := 21;
constant 1hp25rh : integer := 22;
constant stratixl o integer := 23;
constant stratix2 : integer := 24;
constant eclipse : integer := 25;
constant stratix3 o integer := 26;
constant cyclone3 o integer := 27;
constant memvirage90 : integer := 28;
constant tsmc90 o integer := 29;
constant easic90 : integer := 30;
constant atcl8rha : integer := 31;
constant smic013 o integer := 32;
constant tm65gpl o integer := 33;
constant axdsp : integer := 34;
constant spartan6 : integer := 35;
constant virtex6 o integer := 36;
constant actfus : integer := 37;
constant stratix4 o integer := 38;
constant st65Ip : integer := 39;
constant st65gp : integer := 40;
constant easic45 o integer := 41;
constant cmos9sft o integer := 42;
constant apa3e : integer := 43;
constant apa3l o integer := 44;
constant utl30 o integer := 45;
constant ut90 : integer := 46;
constant gf65 o integer := 47;
constant virtex7 : integer := 48;
constant kintex7 : integer := 49;
constant artix7 o integer := 50;
constant zynq7000 : integer := 51;
constant rhlib13t o integer := 52;
constant saed32 o integer := 53;
constant dare o integer := 54;
constant igloo2 : integer := 55;
constant smartfusion2: integer := 55;
constant rhs65 : integer := 56;
constant rtg4 : integer := 57;

Each encapsulating component provides a VHDL generic (normally named TECH) with which the
targeted technology can be selected. The generic is used by the component to select the correct tech-
nology specific cells to instantiatein its architecture and to configure them approriately. This method
does not rely on the synthesis tool to inferring the correct cells.

For technologies not defined in GRLIB, the default “inferred” option can be used. This option relies
on the synthesis tool to infer the correct technology cells for the targeted device.

A second VHDL generic (normally named MEMTECH) is used for selecting the memory cell tech-
nology. This is useful for ASIC technologies where the pads are provided by the foundry and the

www.cobham.com/gaisler

GRLIB IP Library

memory cells are provided by a different source. For memory cells, generics are also used to specify
the address and data widths, and the number of ports.

The two generics TECH and MEMTECH should be defined at the top level entity of a design and be
propagated to all underlying components supporting technology specific implementations.

5.7.2 Memory blocks

Memory blocks are often implemented with technology specific cells or macrocells and require an
encapsulating component to offer a unified technology independent interface. The TECHMAP library
provides such technology independent memory component, as the synchronous single-port RAM
shown in the following code example. The address and data widths are fully configurable by means of
the generics ABITS and DBITS, respectively.

component syncram

generic (
memtech : integer := O; -- memory technology
abits . integer := 6; -- address width
dbits o integer := 8); -- data width
port (
clk 1 in std_ulogic;
address : in std_logic_vector((abits -1) downto 0);
datain : in std_logic_vector((dbits -1) downto 0);
dataout : out std_logic_vector((dbits -1) downto 0);
enable - in std_ulogic;
write > in std_ulogic);

end component;
This synchronous single-port RAM component is used in the AHB RAM component shown in the
following code example.

component ahbram
generic (

hindex : integer := O; -- AHB slave index
haddr o integer := 0;
hmask o integer := 16#fff#;
memtech : integer := 0O; -- memory technology
kbytes : integer := 1); -- memory size

port (
rst - in std_ulogic;
clk : in std_ulogic;
hslvi > in ahb_slv_in_type; -- AHB slave input
hslvo : out ahb_slv_out_type); -- AHB slave output

end component;

ramO : ahbram
generic map (hindex => 1, haddr => 16#240#, hmask => 16#FF0#,
tech => virtex, kbytes => 4)
port map (rst, clk, hslvi, hslvo(1));

In addition to the selection of technology (VIRTEX in this case), the size of the AHB RAM is speci-
fied in number of kilo-bytes. The conversion from kilo-bytes to the number of address bits is per-
formed automatically in the AHB RAM component. In this example, the data width is fixed to 32 bits
and requires no generic. The VIRTEX constant used in this example is defined in the TECH-
MAP.GENCOMP package.

5.7.3 Pads

As for memory cells, the pads used in a design are always technology dependent. The TECHMAP
library provides a set of encapsulated components that hide all the technology specific details from
the user. In addition to the VHDL generic used for selecting the technology (normally named TECH),
generics are provided for specifying the input/output technology levels, voltage levels, slew and driv-
ing strength. A typical open-drain output pad is shown in the following code example:

component odpad

generic (
tech : integer := 0;
level . integer := 0;
slew : integer := 0;
voltage : integer := O;
strength : integer := 0

):

port (
pad : out std_ulogic;
0 : in std_ulogic

end component;

www.cobham.com/gaisler

GRLIB IP Library

5.8

pad0 : odpad
generic map (tech => virtex, level => pci33, voltage => x33v)
port map (pad => pci_irg, o => irgn);

The TECHMAP.GENCOMP package defines the following constants that to be used for configuring
pads:

-- input/output voltage

constant x18v : integer := 1;
constant x25v o integer := 2;
constant x33v : integer := 3;
constant x50v . integer := 5;
-- input/output levels

constant ttl : integer := 0;
constant cmos : integer = 1;
constant pci33 : integer := 2;
constant pcib66 o integer := 3;
constant lvds : integer := 4;
constant sstl2_i : integer := 5;
constant sstl2_ii : integer := 6;
constant sstl3_i1 : integer := 7;
constant sstl3_ii : integer := 8;
-- pad types

constant normal o integer := 0;
constant pullup : integer := 1;
constant pulldown : integer := 2;
constant opendrain: integer := 3;
constant schmitt : integer := 4;
constant dci . integer := 5;

The slew control and driving strength is not supported by all target technologies, or is often imple-
mented differently between different technologie. The documentation for the IP core implementing
the pad should be consulted for details.

Scan test support

5.8.1 Overview

Scan test is a method for production testing digital ASICs. A test mode is added to the design that
changes all flip-flops in the design to shift registers that can be set and read out serially. This is imple-
mented partially in RTL code and partially in the implementation flow.

In a typical GRLIB ASIC, a number of signals are added for scan test. All signals except testen are
usually muxed with other slow 1/O signals so only one pin has to be added to the design.

The signals added are:

testen - Enables test mode (top-level pin)

scanen - Muxes flip-flop data inputs to previous in chain instead of normal function
testoen - Controls all output-enables in test mode

testrst - Controls all async-resets in test mode

scanin - Scan chain inputs

scanout - Scan chain outputs

The top level of the design adds the testen signal to the port list and muxes in the scanen, testoen and
testrst signals. The scanin and scanout signals are not handled at the RTL level.

At the RTL level, the test signals are connected to any hard macro that needs them, such as block
RAM:s and PLL:s. Also testoen and testrst are handled fully at source code level. The RTL also con-
tains logic so that all flip-flops are directly clocked by an input clock pin when test mode is enabled.

During synthesis, the synthesis tool implements registers using special “scan flip-flops” containing
the necessary muxing for the scan chain. The actual scan chain connections are not derived until after
placement, so the scan order can be selected to minimize routing.

www.cobham.com/gaisler

GRLIB IP Library

5.8.2 GRLIB support

To support scan test methods, GRLIB distributes the testen,scanen,testoen and testrst signals via the
AHB and APB bus records. The signals are supplied into the AHB controllers which will pass them
on to the AHB bus records. The APB controller will in turn forward them to the APB bus records.
This way all IP cores connecting to an AHB or APB bus have access to the test signals without having
to add extra input ports for them.

The GRLIB IP cores supporting scan test signals have a generic called scantest to enable this func-
tionality. For historical reasons, this generic is on some IP cores called scanen or testen instead. Cores
which use the scan signals include LEON3, MCTRL and GRGPIO.

The techmap layer handles certain test mode features. The clkgate component will automatically
enable (pass through) the clock when test mode is enabled. The various syncram wrappers will dis-
able the RAM:s during shifting (when scanen and testen are high).

The syncram techmaps have an input vector called testin, containing testen, scanen, plus two extra
technology-dependent bits. The AMBA records contain a testin element that can be passed on directly
to the syncram. The tech dependent bits can be set using the testsig input signal to the AHB controller.
More bits can be added to the vector if necessary via a local GRLIB configuration option.

5.8.3 Usage for existing cores

For using the scan test support with existing cores in GRLIB, the test signals need to be supplied to
the AHB controller and the scan test support needs to be enabled in the IP cores.

5.8.4 Usage for new cores

For adding scan test support to an IP core, a couple of changes may be needed.

* A generic called scantest should be added that enables scan test support. If the core does not have any AHB or
APB interfaces, you will also need to add explicit inputs for any test signals that you need to implement the
below.

«|f the core has asynchronous resets, these should be tied to testrst when testen is high. This is usually done by
a statement such as:

arst <= testrst when scantest/=0 and ahbsi.testen="1" else Irst;

«|f the core controls output enables going directly to pads, these should be tied directly to testoen when testen is
high.

«If you invert or divide clocks internally, these should be bypassed in test mode so all flip-flops are clocked by
the same edge on the incoming clock:
Inclk <= not clk;
stgen: if scantest /= 0 generate
ml: clkmux
generic map (tech => tech)
port map (io => Inclk, il => clk, sel => ahbsi.testen, o => nclk);
end generate;
nstgen: if scantest = 0 generate
nclk <= Inclk;
end generate;
*Pass on the scantest generic and test signals to any submodules, techmap instances and hard macros that need

them.

5.8.5 Configuration options

Certain options in the GRLIB configuration record (section 5.6) controls above features:

The testin vector to the syncrams can be enlarged from the default width of 4 (testen, scanen, and two
custom inputs) to allow more design/technology-specific signals to be passed into the memory wrap-
pers. This is done by setting the grlib_techmap_testin_extra option to a nonzero value. This will
widen also the AMBA records’ testin field to accomodate the extra bits.

In some designs, the testoen connection to the output enables is done above the IP core level. For
example such muxing may be included in the pads or in the boundary scan cells of the technology.
The option grlib_external_testoen turns off the testoen muxing in some IP cores to remove the redun-
dant logic. This is only implemented in some IP cores in the library. For IP where it has not been

www.cobham.com/gaisler

GRLIB IP Library

5.9

implemented, using this will then result in redundant testoen logic but should still be functionally cor-
rect.

Support for integrating memory BIST

GRLIB provides some infrastructure intended to support integrating memory BIST for ASIC designs
directly at the RTL source level. Inserting at source level rather than at netlist level has several advan-
tages, for example MBIST logic gets included in equivalence checking, MBIST execution can be
simulated also at source level and a simplified implementation flow.

The support is divided into multiple layers, described below. Note that the IP core and top level layers
are not included in all releases of GRLIB.

5.9.1 Syncram level

The syncram wrappers have two vectors called customin and customout, plus a customclk input. The
width of the vectors is controlled by a custombits generic. These vectors can be used to communicate
with the BIST for that RAM block.

The syncram wrapper converts the variable-width customin/out vectors into fixed-width zero-padded
custominx and customoutx vectors, which can then be used by the mapping for a specific technology:
custominx(custominx”high downto custombits) <= (others => *07);

custominx(custombits-1 downto 0) <= customin;
customout <= customoutx(custombits-1 downto 0);

Note that if the mapping for a technology drives customoutx, it must also set the syncram_has_cus-
tomif entry in gencomp.vhd, otherwise the customout vector is driven with all-zero to avoid undriven
signal warnings in synthesis:

nocust: if syncram_has_customif(tech)=0 generate

customoutx <= (others => ’07);
end generate;

Some mappings, such as syncrambw and syncramft, may in some cases instantiate multiple syncram
blocks internally. For such mappings, the customin/out vectors’ widths is multiplied by the maximum
number of sub-instances in order to provide a unique in/out vector for each block. Depending on how
many blocks are actually instantiated, the top part of the vector may be unused (only the (custombits *
Nsyncrams) lowest bits are used).

5.9.2 IP core level

Where this is supported, the IP core collects the customin/customout vectors of the instantiated syn-
crams into an array or record and propagates this to ports on the IP called mtesti and mtesto. The cus-
tomclk is propagated to an input called mtestclk.

The custombits generic is not propagated but is set fixed in the IP to the constant memtest_vlen,
defined in techmap/gencomp/gencomp.vhd. In gencomp.vhd, types memtest vector and mem-
test_vector_array are also declared so this does not have to be done for every IP:

constant memtest_vlen: integer := 16;
subtype memtest_vector is std_logic_vector(memtest_vlen-1 downto 0);
type memtest vector_array is array(natural range <>) of memtest_vector;

Below is an example to illustrate how this is integrated in an IP core:

type ipcore_memtest type is record
data_buffers: memtest_vector_array(0 to 5);
control_ram: memtest_vector_array(0 to 1);

end record;

constant ipcore_memtest_none : ipcore_memtest_type := (
(others => (others => *0%)), (others => (others => ’07)));

entity ipcore is

port(
mtesti : in ipcore_memtest_type := grpci2_memtest_none;
mtesto : out ipcore_memtest_type;

mtestclk : in std_ulogic := “0”
eﬁd;

architecture rtl of ipcore is

www.cobham.com/gaisler

GRLIB IP Library

begin

buf0 : syncram

generic map (..., custombits => memtest_vlen)

port map (.-

customin => mtesti.data __buffers(0), customout => mtesto.data_buffer(0),
customclk => mtestclk);

end;

5.9.3 Design level

At the design top level, the different memtest records need to be combined together and interfaced to
the design. How this is done depends on the exact details on the design and the MBIST implentation
S0 it can not be completely standardized. This section describes one possible approach.

One way to do this is to create a shift register for each memory block, tie all shift registers in the
design in series, and access it from the JTAG TAP. To do this, the syncram mapping is designed so
that the customin bit O to each syncram is used as a serial data in, and its customout bit 0 is used as a
serial data out. In order to tell which “slots” in the memtest record are actually occupied, bit 1 of the
customout vector is used as a “present” indicator, driven by constant 1 when there is a real memory
inside it. The jtag clock is passed as mtestclk/customclk, and the JTAG control signals (update/shift/
capture) can be passed either as extra bits on customin or using the additional bits of the testin inter-
face (described in section 5.8)

The chaining can be done using VHDL procedures similar to the below:

procedure chain_memtest(i: memtest vector_array; o: out memtest_vector_array;
di: std _ulogic; do: out std_ulogic) is
variable r: memtest_vector_array(0 to i’length-1);
variable d: std_ulogic;
begln
i= (others => (others => 707));
d = di

for x in r’ range loop
r(x)(oy :
|f |(x)(1) 1” then

= 10)(0);

end if;

end loop;

0O I=r;

do := d;

mo = m;

end procedure;

process(mbist_tdi, mtesto_ipl, mtesto_ip2)
variable di,do: std _ulogic;
variable vi_ipl: ipcorel_memtest_type;
variable vi_ip2: ipcore2_memtest_ type;

begin
di := mbist_tdi;
do := 707;
chain_memtest(mtesto_ipl.data buffers, vi_ipl.data buffers, di, do);
di := do;
chain memtest(mtesto ipl.control_ram, vi_ipl.control_ram, di, do);
di := do;
chain_memtest(mtesto_ip2.data_buffers, vi_ip2.data_buffers, di, do);
di := do;
chain_memtest(mtesto_ip2.data_buffers, vi_ip2.data_buffers, di, do);
di := do;

mbist_tdo <= do;
end process;

www.cobham.com/gaisler

GRLIB IP Library

6
6.1

6.2

GRLIB Design examples

Introduction

The template design examples described in the following sections are provided for the understanding
of how to integrate the existing GRLIB IP cores into a design. The documentation for the various IP
cores should be consulted for details.

LEON3MP

The LEON3MP design example described in this section is a multi-processor system based on
LEON3MP. The design is based on IP cores from GRLIB. Only part of the VHDL code is listed here-
after, with comments after each excerpt. The design and the full source code is located in grlib/
designs/leon3mp.

entity leon3mp is
generic (
ncpu o integer := 1;

The number of LEON3 processors in this design example can be selected by means of the NCPU
generic shown in the entity declaration excerpt above.

signal leon3i : 13_in_vector(0 to NCPU-1);
signal leon3o : 13 out_vector(0 to NCPU-1);
signal irqgi : irg_in_vector(0 to NCPU-1);
signal irqo : irg_out_vector(0 to NCPU-1);
signal 13dbgi : 13 _debug_in_vector(0 to NCPU-1);
signal 13dbgo : 13_debug_out_vector(0 to NCPU-1);

The debug support and interrupt handling is implemented separately for each LEONS3 instantiation in
a multi-processor system. The above signals are therefore declared in numbers corresponding to the
NCPU generic.

signal apbi : apb_slv_in_type;
signal apbo : apb_slv_out_vector := (others => apb_none);
signal ahbsi : ahb_slv_in_type;
signal ahbso : ahb_slv_ _out_vector := (others => ahbs_none);
signal ahbmi : ahb_mst_in_type;
signal ahbmo : ahb_mst_out_vector := (others => ahbm _none);

The multiple LEON AMBA interfaces do not need any special handling in this example, and the AHB
master/slave are therefore declared in the same way as in the previous example.

cpu - for i in 0 to NCPU-1 generate
u0 : leon3s -— LEON3 processor

generic map (hindex => i, fabtech => FABTECH, memtech => MEMTECH,
fpu => fpu, dsu => dbg, disas => disas,
pclow => pclow, tbuf => 8*dbg,
v8 => 2, mac => 1, nwp => 2, lddel => 1,
isetsize => 1, ilinesize => 8, dsetsize => 1,
dlinesize => 8, dsnoop => 0)

port map (clkm, rstn, ahbmi, ahbmo(i), ahbsi, leon3i(i), leon3o(i));

irqi(i) <= leon3o(i).irq;
leon3i(i).irg <= irqo(i);
leon3i (i) .debug <= 13dbgi(i);
13dbgo (i) <= leon3o(i).debug;

end generate;

The multiple LEONS3 processors are instantiated using a generate statement. Note that the AHB index
generic is incremented with the generate statement. Note also that the complete AHB slave input is
fed to the processor, to allow for cache snooping.

dcomgen : if dbg = 1 generate
dsu0 : dsu -- LEON3 Debug Support Unit
generic map (hindex => 2, ncpu => ncpu, tech => memtech, kbytes => 2)
port map (rstn, clkm, ahbmi, ahbsi, ahbso(2), 13dbgo, 13dbgi, dsui, dsuo);

dsui.enable <= dsuen;
dsui.break <= dsubre;
dsuact <= dsuo.active;

dcomO: ahbuart -- Debug UART
generic map (ahbndx => NCPU, pindex => 7, paddr => 7)

www.cobham.com/gaisler

GRLIB IP Library

6.3

port map (rstn, clkm, dui, duo, apbi, apbo(7), ahbmi, ahbmo(NCPU));

dui.rxd <= dsurx;
dsutx <= duo.txd;
end generate;

There is only one debug support unit (DSU) in the design, supporting multiple LEON3 processors.

irqctrlO0 : irgmp -- interrupt controller
generic map (pindex => 2, paddr => 2, ncpu => NCPU)
port map (rstn, clkm, apbi, apbo(2), irqgi, irgo);

There is also only one interrupt controller, supporting multiple LEON3 processors.

To prepare the design for simulation with ModelSim, move to the grlib/designs/leon3mp directory
and execute the “‘make vsim’ command.

$ make vsim

To simulate the default design execute the ‘vsim’ command.
$ vsim -c leon3mp

Simulate the first 100 ns by writing “run’.

LEON3 Demonstration design

GRLIB Version 0.10

Target technology: virtex , memory library: virtex

ahbctrl: AHB arbiter/multiplexer rev 1

ahbctrl: Common 1/0 area at OxFfff00000, 1 Mbyte

ahbctrl: Configuration area at Oxfffff000, 4 kbyte

ahbctrl: mstO: Gaisler Research Leon3 SPARC V8 Processor
ahbctrl: mstl: Gaisler Research AHB Debug UART

ahbctrl: slvO0: European Space Agency Leon2 Memory Controller
ahbctrl: memory at 0x00000000, size 512 Mbyte, cacheable, prefetch
ahbctrl: memory at 0x20000000, size 512 Mbyte

ahbctrl: memory at 0x40000000, size 1024 Mbyte, cacheable, prefetch
ahbctrl: slvl: Gaisler Research AHB/APB Bridge

ahbctrl: memory at 0x80000000, size 16 Mbyte

ahbctrl: slv2: Gaisler Research Leon3 Debug Support Unit
ahbctrl: memory at 0x90000000, size 256 Mbyte

ahbctrl: slv6: Gaisler Research AMBA Trace Buffer

ahbctrl: 170 port at Oxfff40000, size 128kbyte

apbmst: APB Bridge at 0x80000000 rev 1

apbmst: slv0: European Space Agency Leon2 Memory Controller
apbmst: 1/0 ports at 0x80000000, size 256 byte

apbmst: slvl: Gaisler Research Generic UART

apbmst: 1/0 ports at 0x80000100, size 256 bhyte

apbmst: slv2: Gaisler Research Multi-processor Interrupt Ctrl.
apbmst: 1/0 ports at 0x80000200, size 256 byte

apbmst: slv3: Gaisler Research Modular Timer Unit

apbmst: 1/0 ports at 0x80000300, size 256 byte

apbmst: slv7: Gaisler Research AHB Debug UART

apbmst: 1/0 ports at 0x80000700, size 256 byte

ahbtrace6: AHB Trace Buffer, 2 kbytes

gptimer3: GR Timer Unit rev 0, 16-bit scaler, 2 32-bit timers, irq 8
apbictrl: Multi-processor Interrupt Controller rev 1, #cpu 1
apbuartl: Generic UART rev 1, irq 2

ahbuart7: AHB Debug UART rev O

dsu2: LEON3 Debug support unit + AHB Trace Buffer, 2 kbytes

leon3_0: LEON3 SPARC V8 processor rev 0O

leon3_0: icache 1*1 kbyte, dcache 1*1 kbyte

HHFEHHFHFEHFH T HFF TR EHR

LEONSASIC

The LEONS3ASIC design example provides a set of self-documented reference scripts for synthesis
and verification of the generated netlist via formal verification and pre-layout GTL simulation. The
LEONBS3ASIC synthesis and verification scripts serves as a guideline for developing and integrating
your synthesis scripts into GRLIB. The design and scripts is located in grlib/designs/leon3asic.

The LEON3ASIC synthesis scrips include options to support different ASIC technology libraries via
GRLIB TECHMAP structure, Insertion of SCAN and BIST and different synthesis options to in
prove quality and timing of the LEON3ASIC netlist. Build options is set in build script dc.tcl except
for the ASIC library which is set in config.vhd or make xconfig.

www.cobham.com/gaisler

GRLIB IP Library

6.3.1 Modification of GRLIB Scripts

Selected TECH and MEMTECH generics are used for selecting the overall technology and the mem-
ory technology. TECH and MEMTECH generics needs to be passed on to synthesis and verification
scripts in order for the scripts to select and compile correct ASIC technology library. The
LEONBSASIC reference design make use of the pre-processing feature in Makefile scripts to extract
the information from config.vhd by adding the following lines to the LEON3ASIC design Makefile:

TECHLIBS

= $(shell grep FABTECH config.vhd | grep -o "[» 1*$$" | sed -e "s/;//9")

inferred grdware dware secureip unisim

DCOPT =

DCSCRIPT=dc.tcl

FMOPT =

FMSCRIPT=fm. tcl

-x "set argv [lindex [list $(TECHLIBS)] 0]; set top $(TOP)"

-x "set argv [lindex [list $(TECHLIBS)] 0]; set top $(TOP)"

VSIMOPT= -t ps -L work -L $(TECHLIBS) -novopt -i $(SIMTOP)

VSIMGTLOPT=$(VSIMOPT) -do ./gtl_do

$(TOP)_$(grtechlib).sdf

-sdfmax /$(SIMTOP)/$(TOP)=./synopsys/

Only the variable VSIMGTLOPT are local and the variables DCOPT, DCSCRIPT, FMOPT,
FMSCRIPT and VSIMOPT are all integrated GRLIB variables.

6.3.2 RTL Simulation scripts

To compile and simulate the default design, move to the grlib/designs/leon3asic directory and execute
the GRLIB command ‘vsim’ command.

$ make vsim
$ make vsim-launch

Simulate the first 100 ns by writing ‘run’.

HHHEHFHFHFHFHHFFEH TR TSRS

ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
ahbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:
apbctrl:

Common 1/0 area
AHB masters: 1,

LEON3 ASIC Demonstration design
GRLIB Version 1.3.2, build 4137
Target technology: dare

, memory library: dare
AHB arbiter/multiplexer rev 1

disabled
AHB slaves:

Configuration area at OxfffffOOO 4 kbyte

mst0: Aeroflex
slv0: Aeroflex

Gaisler
Gaisler

AHB-to-AHB Bridge
AHB/APB Bridge

memory at 0x80000000, size 1 Mbyte
AHB arbiter/multiplexer rev 1

Common 1/0 area

disabled

AHB masters: 6, AHB slaves: 8
Configuration area at Oxfffff000, 4 kbyte

mstO: Aeroflex
mstl: Aeroflex
mst2: Aeroflex
mst3: Aeroflex
mst4: Aeroflex
mst5: Aeroflex
slv0: European
memory at
memory at
memory at
slvl: Aeroflex
memory at
slv2: Aeroflex
memory at
slv3: Aeroflex
memory at

Gaisler
Gaisler
Gaisler
Gaisler
Gaisler
Gaisler
Space Agency
0x00000000,
0x20000000,
0x40000000,
Gaisler
0x80000000,
Gaisler
0x90000000,
Gaisler
0xa0000000,

LEON3 SPARC V8 Processor
AHB Debug UART
JTAG Debug Link
GRSPW2 SpaceWire Serial Link
GRSPW2 SpaceWire Serial Link
GRSPW2 SpaceWire Serial Link
LEON2 Memory Controller
size 512 Mbyte, cacheable, prefetch
size 512 Mbyte
size 1024 Mbyte, cacheable, prefetch
AHB-to-AHB Bridge
size 256 Mbyte
LEON3 Debug Support Unit
size 256 Mbyte
AHB/APB Bridge
size 1 Mbyte

APB Bridge at 0xa0000000 rev 1

slv0: European

Space Agency

LEON2 Memory Controller

1/0 ports at 0xa0000000, size 256 byte

slv2: Aeroflex
1/0 ports
slv10: Aeroflex
1/0 ports
slvll: Aeroflex
1/0 ports
slv1l2: Aeroflex

Gaisler

Multi-processor Interrupt Ctrl.

at 0xa0000200, size 256 byte

Gaisler

GRSPW2 SpaceWire Serial Link

at 0xa0000a00, size 256 bhyte

Gaisler

GRSPW2 SpaceWire Serial Link

at 0xa0000b00, size 256 bhyte

Gaisler

GRSPW2 SpaceWire Serial Link

www.cobham.com/gaisler

GRLIB IP Library

apbctrl: 1/0 ports at 0xa0000c00, size 256 byte

apbctrl: slvl5: Aeroflex Gaisler AHB Status Register
apbctrl: 1/0 ports at 0xa0000f00, size 256 byte

apbctrl: APB Bridge at 0x80000000 rev 1

apbctrl: slvl: Aeroflex Gaisler Generic UART

apbctrl: 1/0 ports at 0x80000100, size 256 byte

apbctrl: slv3: Aeroflex Gaisler Modular Timer Unit
apbctrl: 1/0 ports at 0x80000300, size 256 bhyte

apbctrl: slv6: Aeroflex Gaisler General Purpose 1/0 port
apbctrl: 1/0 ports at 0x80000600, size 256 byte

apbctrl: slv7: Aeroflex Gaisler AHB Debug UART

apbctrl: 1/0 ports at 0x80000700, size 256 byte

apbctrl: slv9: Aeroflex Gaisler Generic UART

apbctrl: 1/0 ports at 0x80000900, size 256 bhyte

apbctrl: slv13: Aeroflex Gaisler AMBA Wrapper for OC I2C-master
apbctrl: 1/0 ports at 0x80000d00, size 256 byte

apbctrl: slvl4: Aeroflex Gaisler SPI Controller

apbctrl: 1/0 ports at 0x80000e00, size 256 byte

grspwl2: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 12
grspwll: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 11
grspwl0: Spacewire link rev 0, AHB fifos 2x64 bytes, rx fifo 16 bytes, irq 10
ahbstatl5: AHB status unit rev 0, irg 1

spictrll4: SPI controller, rev 5, irq 14

i2cmstl3: AMBA Wrapper for OC I2C-master rev 3, irq 13

grgpio6: 16-bit GPI0 Unit rev 2

gptimer3: GR Timer Unit rev 0, 12-bit scaler, 4 32-bit timers, irqgq 6

1rgmp: Multi-processor Interrupt Controller rev 3, #cpu 1, eirq O

apbuart9: Generic UART rev 1, fifo 4, irq 3, scaler bits 12

apbuartl: Generic UART rev 1, fifo 4, irq 2, scaler bits 12

ahbjtag AHB Debug JTAG rev 2

ahbuart7: AHB Debug UART rev O

dsu3_2: LEON3 Debug support unit + AHB Trace Buffer, 1 kbytes

leon3_0: LEON3 SPARC V8 processor rev 3: iuft: 0, fpft: O

leon3_0: icache 1*4 kbyte, dcache 1*4 kbyte

HHEHHFHHFHR TR TR TSR TSR

6.3.3 Synthesis scripts

The LEON3ASIC design synthesis script dc.tcl has been tested in Design Compiler H-2013.03-SP5.
The dc.tcl script calls the generated GRLIB script for compilation and elaboration. Script name and
location can be modified via the GRLIB variable DSCRIPT.

To synthesize the LEON3ASIC design, move to the grlib/designs/leon3asic directory and execute the
GRLIB 'dc' command:

$ make dc

The synthesis script calls the scripts timing.tcl for general timing constraints, report.tcl to report tim-
ing and design exceptions found during synthesis and ASIC technology setup and timing scripts are
located in the directory grlib/designs/leon3asic/grtechscripts.

For every ASIC technology a setup and timing script is required. The setup script grtechscripts/
<techmap_name>_setup.tcl specify the ASIC library location and which cells to use during the syn-
thesis. The timing script grtechscripts/<techmap_name>_timing.tcl specify clocks, timing margin
and operation condition to be used for ASIC technology.

6.3.4 Formal verifcation scripts

The LEON3ASIC design formal verification script fm.tcl has been tested using Design Compiler H-
2013.03-SP5 and Formality H-2013.03-SP5. Script name and location can be modfied via the GRLIB
variable FMSCRIPT.

To run equivalence check execute the GRLIB “fm’ command:
$ make fm

6.3.5 GTL Simulation scripts

To simulate the synthesis netlist using the testbench the ASIC vendor library simulation models
needs to integrated into the GRLIB or as in the LEON3ASIC reference design a new separate target
for compiling the ASIC vendor library is used.

To GTL simulation execute the local LEON3ASIC design “gtl-vsim-launch’ command:
$ make gtl-vsim-launch

www.cobham.com/gaisler

GRLIB IP Library

6.4

Xilinx Dynamic Partial Reconfiguration Examples

Examples of how to create dynamically reconfigurable systems on Xilinx FPGAs are included in sev-
eral GRLIB template designs. The following documents describe the design flow and IP cores:

doc/dprc/gsg/dprc_gsg.pdf - DPRC and Partial Reconfiguration Design Flow - Quick Start Guide

doc/dprc/ug/dprc_ug.pdf - IP core documentation for FPFGADynamic Reconfiguration controller with
DMA AHB interface.

The following template designs contain example instantiation of the DPRC IP core:
leon3-digilent-nexys4ddr

leon3-gr-cpci-xcdv

leon3-xilinx-vc707

Please note that the use of partial reconfiguration requires a special license feature from Xilinx.

www.cobham.com/gaisler

GRLIB IP Library

GRLIB, Jan 2016, Version 1.5.0 74 www.cobham.com/gaisler

GRLIB IP Library

7
7.1

7.2

GRLIB FPGA board template designs

Introduction

GRLIB includes template designs for FPGA development boards/kits. Availability of template

designs varies depending on type of GRLIB distribution (COM, FT, FT-FPGA, GPL).

Supported FPGA boards

FPGA

Vendor FPGA Board Template design name

Altera Altera Stratix-11 Development boardS leon3-altera-ep2s60-sdr,
leon3-altera-ep2s60-ddr,
leon3-altera-ep2sgx90-av

Altera Altera Cyclone-111 Starter Kit leon3-altera-ep3c25

Altera Altera Cyclone-I1l Multimedia board leon3-altera-ep3c25-eek

Altera Altera CycloneV E Development kit leon3-altera-c5ekit

Altera Altera Stratix-111 FPGA Development kit leon3-altera-ep3s1150

Altera Arrow BE Micro SDK Cyclone IV board leon3-arrow-bemicro-sdk

Altera TerASIC DE-4 Development and Education leon3-terasic-de4

board

Altera TerASIC DE2-115 Cyclone-1V board leon3-terasic-de2-115

Altera TerASIC DE2 Cyclone Il board leon3-altera-de2-ep2c35

Altera TerASIC DEO-Nano board leon3-terasic-de0-nano

Altera TerASIC SoCKit leon3-terasic-sockit

Microsemi | Actel Fusion Advanced Development kit leon3-actel-fusion

Microsemi | Actel ProASIC3L Starter Kit leon3-actel-proasic3l

Microsemi | Actel CoreMP7 Developers Kit leon3-actel-proasic3

Microsemi | Microsemi IGLOO2 Evaluation Kit leon3-microsemi-m2gl-eval-kit

Microsemi | ProASIC3 MCC-C Board leon3-gr-mcc-c

Microsemi | GR-CPCI-AX board leon3-rtax-cid*

Microsemi | RTG4 Development Kit leon3-microsemi-rtg4-devkit-es

Microsemi | SmartFusion2 Evaluation Kit leon3-microsemi-m2s090ts-eval-kit

Microsemi | SmartFusion2 Advanced Development Kit leon3-microsemi-m2s150ts-adv-kit

Xilinx Avnet Spartan3-1500 board leon3-avnet-3s1500

Xilinx Avnet Virtex4 Evaluation board leon3-avnet-eval-xc4vIx25,
leon3-avnet-eval-xc4vIx60

Xilinx Digilent Virtex2pro XUP board leon3-digilent-xup

Xilinx Digilent Basys3 board leon3-digilent-basys3

Xilinx Digilent Nexys 3 board leon3-digilent-nexys3

Xilinx Digilent Nexys 4 board leon3-digilent-nexys4

Xilinx Digilent Nexys 4 DDR board leon3-digilent-nexys4ddr

Xilinx Digilent Nexys Video board leon3-digilent-nexys-video

Xilinx Digilent Spartan3 Starter board leon3-digilent-xc3s1000

Xilinx Digilent Spartan3E Development board leon3-digilent-xc3s1600e

Xilinx Digilent Spartan6 Atlys board leon3-digilent-atlys

Xilinx Digilent XC72020 leon3-digilent-xc7z020

www.cobham.com/gaisler

GRLIB IP Library

FPGA
Vendor

FPGA Board

Template design name

Xilinx

Nuhorizons Spartan3-1500 board

leon3-nuhorizons-3s1500

Xilinx

Pender/Gaisler GR-XC3S51500/2000 board

leon3-gr-xc3s-1500

Xilinx

Pender/Gaisler GR-PCI-XC2V3000 board

No longer supported.

Xilinx

Pender/Gaisler GR-CPCI-XC2V6000 board

No longer supported

Xilinx

Pender/Gaisler GR-CPCI-XC4VLX100/200
board

leon3-gr-cpci-xc4v

Xilinx

Pender/Gaisler GR-PCI-XC5VLX50/110
board

leon3-gr-pci-xc5v

Xilinx

Pender/Gaisler GR-XC6S-LX75 Spartan6
board

leon3-gr-xc6s

Xilinx

Pender/Gaisler GR-CPCI-XC7K board

leon3-gr-cpci-xc7k

Xilinx

Xilinx ML401 / ML402 / ML403 / ML501 /
ML505 / ML506 / ML507 / ML510 boards

leon3-xilinx-m140x, leon3-xilinx-m1403,
leon3-xilinx-m1501, leon3-xilinx-mI50x,
leon3-xilinx-m1510

Xilinx

Xilinx Spartan3A DSP-1800 Starter Platform

leon3-xilinx-xc3sd-1800

Xilinx

Xilinx SP601 Spartan6 Evaluation kit

leon3-xilinx-sp601

Xilinx

Xilinx SP605 Spartan6 Evaluation kit

leon3-xilinx-sp605

Xilinx

Xilinx ML605 Virtex-6 Development board

leon3-xilinx-m1605

Xilinx

Xilinx AC701 Artix-7 Evaluation kit

leon3-xilinx-ac701

Xilinx

Xilinx VC707 Virtex-7 Evaluation kit

leon3-xilinx-vc707

Xilinx

Xilinx KC705 Kintex Evaluation kit

leon3-xilinx-kc705

Xilinx

Xilinx Zynq ZC702

leon3-xilinx-zc702

Xilinx

ZTEX USB-FPGA Module 1.11

leon3-ztex-ufm-111

Xilinx

ZTEX USB-FPGA Module 1.15

leon3-ztex-ufm-115

www.cobham.com/gaisler

GRLIB IP Library

8
8.1

8.2

8.3

8.4

8.5

Using netlists

Introduction

GRLIB supports the usage of mapped netlists in the implementation flow. The netlists can be included
in the flow at two different points; during synthesis or during place&route. The netlists can have two
basic formats: mapped VHDL (.vhd) or a technology-specific netlist format (.ngo, .vgm, .edf). The
sections below outline how the different formats are handled.

GRLIB IP cores such as GRSPW, GRSPW2. GRFPU, GRFPU-lite, LEON3FT and GR1553B that
were traditionally available only as netlists are provided as encrypted RTL instead of netlist format.
The main remaining use for netlists are for GRFPU/GRFPU-lite evaluation. Some IP cores, such as
GRPCI2, may have parts of the IP core in netlist format in order to simplify constraints and timing
closure.

Mapped VHDL

A core provided in mapped VHDL format is included during synthesis, and treated the same as any
RTL VHDL code. To use such netlist, the core must be configured to incorporate the netlist rather
than the RTL VHDL code. This can be done in the xconfig configuration menu, or by setting the ‘net-
list” generic on the IP core. The benefit of VHDL netlists is that the core (and whole design) can be
simulated and verified without special simulation libraries.

Xilinx netlist files

To use Xilinx netlist files (.ngo or .edf), the netlist should be placed in the ‘netlists/xilinx/tech’ direc-
tories. During place&route, the ISE mapper will look in this location and replace and black-boxes in
the design with the corresponding netlist. Note that when using .ngo or .edf files, the “netlist’ generic
on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the design
is simulated a VHDL netlist will be used (if available) and when the design is synthesized an EDIF
netlist will be used. This is done in order to speed up synthesis. Parsing and performing synthesis on
VHDL netlists is time consuming and using an EDIF netlist instead decreases the time required to run
the tools.

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using the edif2ngd application in the ISE suite.
After a netlist has been converted to .ngo format the EDIF version can be removed from the library.

Altera netlists

To use Altera netlist files (.vgm), the netlist should be placed in the *netlists/altera/tech’ directories, or
in the current design directory. During place&route, the Altera mapper will look in these location and
replace and black-boxes in the design with the corresponding netlist. Note that when using .vgm files,
the “netlist’ generic on the cores should NOT be set.

A special case exists for GRFPU and GRFPU-lite netlists. In GRLIB distributions that lack FPU
source code, the netlist version of the selected FPU core will always be instantiated. When the design
is simulated a VHDL netlist will be used (if available) and when the design is synthesized a .vgm net-
list will be used. This is done in order to speed up synthesis and due to the synthesis tools not always
being able to handle VHDL netlists correctly.

Known limitations

Some tool versions have bugs that prevent them from using EDIF netlists. In order to work around
such issues, convert the EDIF netlist to a .ngo netlist using the edif2ngd application in the ISE suite.
After a netlist has been converted to .ngo format the EDIF version can be removed from the library

When synthesizing with Xilinx XST, the tool can crash when the VHDL netlist of GRFPU is used.
This is not an issue with recent GRLIB versions since the VHDL netlists are currently only used for
simulation.

www.cobham.com/gaisler

GRLIB IP Library

GRLIB, Jan 2016, Version 1.5.0 78 www.cobham.com/gaisler

GRLIB IP Library

9
9.1

9.2

Extending GRLIB

Introduction

GRLIB consists of a number of VHDL libraries, each one providing a specific set of interfaces or IP
cores. The libraries are used to group IP cores according to the vendor, or to provide shared data struc-
tures and functions. Extension of GRLIB can be done by adding cores to an existing library, adding a
new library and associated cores/packages, adding portability support for a new target technology,
adding support for a new simulator or synthesis tool, or adding a board support package for a new
FPGA board.

GRLIB organisation

The automatic generation of compile scripts searches for VHDL libraries in the file lib/libs.txt, and in
lib/*/libs.txt. The libs.txt files contains paths to directories containing IP cores to be compiled into the
same VHDL library. The name of the VHDL library is the same as the directory. The main libs.txt
(lib/libs.txt) provides mappings to libraries that are always present in GRLIB, or which depend on a
specific compile order (the libraries are compiled in the order they appear in libs.txt):

$ cat lib/libs.txt

grlib
tech/atcl8
tech/apa
tech/unisim
tech/virage
fpu

gaisler
esa
opencores

Relative paths are allowed as entries in the libs.txt files. The path depth is unlimited. The leaf of each
path corresponds to a VHDL libary name (e.g. “‘grlib’ and “unisim’).

Each directory specified in the libs.txt contains the file dirs.txt, which contains paths to sub-directo-
ries containing the actual VHDL code. In each of the sub-directories appearing in dirs.txt should con-
tain the files vhdlsyn.txt and vhdlsim.txt. The file vhdIsyn.txt contains the names of the files which
should be compiled for synthesis (and simulation), while vhdlsim.txt contains the name of the files
which only should be used for simulation. The files are compiled in the order they appear, with the
files in vhdlsyn.txt compiled before the files in vhdlsim.txt.

The example below shows how the AMBA package in the GRLIB VHDL library is constructed:

$ Is lib/grlib
amba/ dirs.txt modgen/ sparc/ stdlib/ tech/ util/

$ cat lib/grlib/dirs.txt
stdlib util sparc modgen amba tech

$ Is lib/grlib/amba
ahbctrl.vhd amba.vhd apbctrl.vhd vhdlsyn.txt

$ cat grlib/lib/grlib/ambasvhdlsyn.txt
amba.vhd apbctrl.vhd ahbctrl._vhd

The libraries listed in the grlib/lib/libs.txt file are scanned first, and the VHDL files are added to the
automaticaly generated compile scipts. Then all sub-directories in lib are scanned for additional
libs.txt files, which are then also scanned for VHDL files. It is therefore possible to add a VHDL
library (= sub-directory to lib) without having to edit lib/libs.txt, just by inserting into lib.

When all libs.txt files have been scanned, the dirs.txt file in lib/work is scanned and any cores in the
VHDL work library are added to the compile scripts. The work directory must be treated last to avoid
circular references between work and other libraries. The work directory is always scanned as does
not appear in lib/libs.txt.

www.cobham.com/gaisler

GRLIB IP Library

9.3

9.2.1 Encrypted RTL

If the GRLIB library includes IP cores that are distributed as encrypted RTL, then the files with
encrypted RTL are not listed in the vhdlsyn.txt file described in the previous section. Due to tool
incompatibilities, some tools have a separate copy of the encrypted RTL. The contents of the
encrypted containers is identical. The duplication is made since encrypted RTL for one tool may
cause errors in other tools if included in all tools’ file lists.

All files that should be encrypted within a GRLIB directory are concatenated into one file before
encryption. This results in one encrypted file per directory per tool. The list below lists the file names
that correspond to vhdlsyn.txt for encrypted RTL and the naming convention used for the encrypted
containers.

TABLE 41. Encrypted RTL

File corresponding to Naming convention used for
Tool vhdlsyn.txt encrypted RTL
Aldec Riviera vhdImtie.txt mtie_<library>.vhd
Cadence tools vhdlcdse.txt <library>.vhdp
Mentor Model/QuestaSim vhdImtie.txt mtie_<library>.vhd
Synopsys Synplify vhdlsynpe.txt synpe_<library>.vhd
Synopsys Design Compiler vhdldce.txt <library>.vhd.e
Xilinx tools vhdlxile.txt xile_<library>.vhd

File listed in the tool specific vhdlsyn.txt file will only be added to the file list for a specific tool. For
example, file listed in vhdlIxile.txt will only be added to Xilinx ISE and Vivado projects.

Adding an AMBA IP core to GRLIB

9.3.1 Example of adding an existing AMBA AHB slave IP core

An IP core with AMBA interfaces can be easily adapted to fit into GRLIB. If the AMBA signals are
declared as standard IEEE-1164 signals, then it is simple a matter of assigning the IEEE-1164 signal
to the corresponding field of the AMBA record types declared in GRLIB, and to define the plug&play
configuration information, as shown in the example hereafter.

The plug&play configuration utilizes the constants and functions declared in the GRLIB AMBA
‘types’ package, and the HADDR and HMASK generics.

Below is the resulting entity for the adapted component:

library ieee; use ieee.std_logic_1164.all;
library grlib; use grlib.amba.all;

entity ahb_example is

generic (

hindex : integer := 0;

haddr : integer := 0;

hmask : integer := 1l6#fff#);
port (

rst - in std_ulogic;

clk - in std_ulogic;

ahbsi > in ahb_slv_in_type;

ahbso : out ahb_slv_out_type);

end;

architecture rtl of ahb_example is

-- component to be interfaced to GRLIB
component ieee_example

port (
rst > in std_ulogic;
clk > in std_ulogic;
hsel - in std_ulogic; -- slave select
haddr : in std_logic_vector(31 downto 0); -- address bus (byte)
hwrite - in std_ulogic; -- read/write
htrans : in std_logic_vector(l downto 0); -- transfer type
hsize : in std_logic_vector(2 downto 0); -- transfer size
hburst : in std_logic_vector(2 downto 0); -- burst type

www.cobham.com/gaisler

GRLIB IP Library

hwdata : in std_logic_vector(31 downto 0); -- write data bus

hprot > in std_logic_vector(3 downto 0); -- protection control
hreadyi - in std_ulogic; -- transfer done
hmaster : in std_logic_vector(3 downto 0); -- current master
hmastlock : in std_ulogic; -- locked access
hreadyo : out std_ulogic; -- transfer done
hresp : out std_logic_vector(l downto 0); -- response type
hrdata : out std_logic_vector(31 downto 0); -- read data bus
hsplit : out std_logic_vector(15 downto 0)); -- split completion

end component;

-- plugé&play configuration
constant HCONFIG: ahb_config_type := (
0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
4 => ahb_membar(memaddr, "0", "0", memmask), others => X"00000000");

begin
ahbso.hconfig <= HCONFIG; -- Plug&play configuration
ahbso.hirg <= (others => “07); -- No interrupt line used
-- original component
e0: ieee_example
port map(
rst, clk, ahbsi._hsel(ahbndx), ahbsi.haddr, ahbsi.hwrite, ahbsi.htrans, ahbsi.hsize,
ahbsi._hburst, ahbsi_hwdata, ahbsi.hprot, ahbsi.hready, ahbsi_hmaster,
ahbsi.hmastlock, ahbso.hready, ahbso.hresp, ahbso.hrdata, ahbso.hsplit);
end;

The files containing the entity ahb_example the entity for ieee_example should be added to GRLIB
by listing the files in a vhdlsyn.txt file located in a directory that will be scanned by the GRLIB
scripts, as described in section 9.2. The paths in vhdlsyn.txt can be relative, allowing the VHDL files
to be placed outside the GRLIB tree. The entities and packages will be compiled into a library with
the same name as the directory that holds the vhdlsyn.txt file.

In the ahb_example example, the core does not have the ability to assert an interrupt. In order to assert
an interrupt, an AHB core must drive the hirg vector in the ahb_slv_out_type (or ahb_mst_out_type)
output record. If the core is an APB slave, it should drive the apb_slv_out_type record’s pirg vector.
Position n of hirg/pirg corresponds to interrupt line n. All unused interrupt lines must be driven to ‘0.

9.3.2 AHB Plug&play configuration

As described in section 5.3, the configuration record from each AHB unit is sent to the AHB bus con-
troller via the HCONFIG signal. From this information, the bus controller automatically creates the
read-only plug&play area.

In the ahb_example example in the previous section, the plug&play configuration is held in the con-
stant HCONFIG, which is assigned to the output ahbso.hconfig. The constant is created with:

-- plugé&play configuration

constant HCONFIG : ahb_config_type := (
0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),
4 => ahb_membar(memaddr, "0*, "0", memmask), others => X"00000000");

The ahb_config_type is an array of 32-bit vectors. Each position in this array corresponds to the same
word in the core’s plug&play information. Section 5.3.1 describes the plug&play information in the
following way: The first word is called the identification register and contains information on the
device type and interrupt routing. The last four words are called bank address registers, and contain
address mapping information for AHB slaves. The remaining three words are currently not assigned
and could be used to provide core-specific configuration information.

The AMBA package (lib/grlib/amba/amba.vhd) in GRLIB provides functions that help users create
proper plug&play information. Two of these functions are used above. The ahb_device_reg function
creates the identification register value for an AHB slave or master:

ahb_device_reg (vendor, device, cfgver, version, interrupt)

www.cobham.com/gaisler

GRLIB IP Library

The parameters are explained in the table below:

TABLE 42. ahb_device_reg parameters

Parameter Comments

vendor Integer Vendor ID. Typically defined in lib/grlib/amba/devices.vhd. It is recom-
mended that new cores be added under a new vendor ID or under the contrib
vendor ID.

device Integer Device ID. Typically defined in lib/grlib/amba/devices.vhd. The combi-

nation of vendor and device ID must not match any existing core as this may
lead to your IP core being initialized by drivers for another core.

cfgver Plug&play information version, only supported value is 0.
version Core version/revision. Assigned to 5-bit wide field in plug&plat information.
interrupt Set this value to the first interrupt line that the core drives. Set to 0 if core does

not make use of interrupts.

If an IP core only has an AHB master interface, the only position in HCONFIG that needs to be spec-
ified is the first word:
constant hconfig : ahb_config_type := (

0 => ahb_device_reg (venid, devid, 0, version, 0),
others => X"00000000");

If an IP core has an AHB slave interface, as in the ahb_example example, we also need to specify the
memory area(s) that the slave will map. Again, the HCONFIG constant from ahb_example is:
-- plugé&play configuration

constant HCONFIG : ahb_config_type = (
0 => ahb_device_reg (VENDOR_EXAMPLE, EXAMPLE_AHBRAM, 0, 0, 0),

4 => ahb_membar(memaddr, "0", "0", memmask), others => X"00000000");

The last four words of ahb_config_type (positions 4 - 7) are called bank address registers (BARs), and
contain memory map information. This information determines address decoding in the AHB control-
ler (AHBCTRL core). Address decoding is described in detail under section 5.3.3. When creating an
AHB memory bank, the ahb_membar function can be used to automatically generate the correct lay-
out for a BAR:

ahb_membar(memaddr, prefetch, cache, memmask)

To create an AHB 1/0 bank, the ahb_iobar function can be used:

ahb_iobar(memaddr, memmask)
The parameters of these functions are described in the table below:

TABLE 43. ahb_membar/ahb_iobar parameters

Parameter Comments

memaddr Integer value propagated to BAR.ADDR

memmask Integer value propagated to BAR.MASK

prefetch Std_Logic value propagated to prefetchable field (P) in bank address register.
Only applicable for AHB memory bars (ahb_membar function).

cache Std_Logic value propagated to cacheable field (C) in bank address register. Only
applicable for AHB memory bars (ahb_membar function).

An AHB slave can map up to four address areas (it has four bank address registers). Typically, an IP
core has one AHB I/0 bank with registers and zero or several AHB memory banks that map a larger
memory area. One example is the GRLIB DDR2 controller (DDR2SPA) that has the following
HCONFIG:
constant hconfig : ahb_config_type = (

0 => ahb_device_reg (VENDOR_GAISLER, GAISLER_DDR2SP, O, REVISION, 0),

4 => ahb_membar(haddr, *1°, "1%, hmask),

5 => ahb_iobar(ioaddr, iomask),

others => zero32);

www.cobham.com/gaisler

GRLIB IP Library

Position four, the first bank address register, defines an AHB memory bank which maps external
DDR2 SDRAM memory. Position five, the second bank address register, defines an AHB 1/O bank
that holds the memory controller’s register interface. On this core, the haddr, hmask, ioaddr and
iomask values are set via VHDL generics.

For IP cores that map multiple memory areas, there is no need for the IP core to decode the address in
order to determine which bank that is accessed. The AHB controller decodes the incoming address
and selects the correct AHB slave via the HSEL vector. The AHB controller also indicates which
bank that is being accessed via the HMBSEL vector, when bank n is accessed HMBSEL(n) will be
asserted.

9.3.3 Example of creating an APB slave IP core

The next page contains an APB slave example core. The IP core has one memory mapped 32-bit reg-
ister that will be reset to zero. The register can be read or written from register address offset 0. The
core’s base address, mask and bus index settings are configurable via VHDL generics (pindex, paddr,
pmask). The paddr and pmask VHDL generics are propagated to the APB bridge via the apbo.pconfig
signal and the index is propagated via the apbo.pindex signal. These values are then used by the APB
bridge to generate the APB address decode and slave select logic.

Example of APB slave IP core with one 32-bit register that can be read and written:
library ieee; use ieee.std_logic_1164.all;

library grlib; use grlib.amba.all; use grlib.devices.all;

library gaisler; use gaisler.misc.all;

entity apb_example is

generic (

pindex : integer := 0;

paddr . integer := 0;

pmask o integer := 16#fff#);
port (

rst - in std_ulogic;

clk - in std_ulogic;

apbi > in apb_slv_in_type;
q apbo : out apb_slv_out_type);

end;

architecture rtl of apb_example is
constant REVISION : integer := 0O;

constant PCONFIG : apb_config_type := (
0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
1 => apb_iobar(paddr, pmask));

type registers is record
reg : std_logic_vector(31 downto 0);
end record;

signal r, rin : registers;
begin

comb : process(rst, r, apbi)
variable readdata : std_logic_vector(31 downto 0);
variable v . registers;

begin
VvV I=r;

-- read register

readdata := (others => "0%);

case apbi.paddr(4 downto 2) is
when 000" => readdata := r.reg(31 downto 0);
when others => null;

end case;

-- write registers
iT (apbi.psel(pindex) and apbi.penable and apbi.pwrite) = "1" then
case apbi.paddr(4 downto 2) is
when ""000" => v.reg := apbi.pwdata;
when others => null;
end case;
end if;

-- system reset
if rst = 0" then v.reg := (others => "0"); end if;

rin <= v;

www.cobham.com/gaisler

GRLIB IP Library

9.4

apbo.prdata <= readdata; -- drive apb read bus
end process;
apbo.pirqg <= (others => "0%); -- No IRQ
apbo.pindex <= pindex; -- VHDL generic
apbo.pconfig <= PCONFIG; -- Config constant

-- registers

regs : process(clk)
begin

1T rising_edge(clk) then r <= rin; end if;
end process;

-- boot message

-- pragma translate_off
bootmsg : report_version
generic map (apb_example™ & tost(pindex) &": Example core rev " & tost(REVISION));
-- pragma translate_on

end;
The steps required to instantiate the apb_example IP core in a system are:

* Add the file to a directory covered by the GRLIB scripts (via libs.txt and dirs.txt)

* Add the file to vhdlsyn.txt in the current directory

*Moadify the example to use a unique vendor and device ID (see creation of PCONFIG constant)
= Create a component for the apb_example core in a package that is also synthesized.

*|nclude the package in your design top-level

*|nstantiate the component in your design top-level

For a complete example, see the General Purpose Register (GRGPREG) IP core located in lib/gaisler/
misc/grgpreg.vhd. That core is very similar to the example given in this section. The GRGPREG core
has a component declaration in the grlib.misc package located at lib/gaisler/misc/misc.vhd. Note that
both of these files are listed in the vhdlsyn.txt file located in the same directory.

9.3.4 APB plug&play configuration

APB slave plug&play configuration is propagated via the apb_slv_out_type record’s pconfig member.
The configuration is very similar to that of an AHB slave. The main difference is that APB slaves
only have one type of BAR and each APB slave only has one bank. The creation of the PCONFIG
array in the previous section looked like:
constant PCONFIG : apb_config_type :=

(
0 => ahb_device_reg (VENDOR_ID, DEVICE_ID, 0, REVISION, 0),
1 => apb_iobar(paddr, pmask));

The ahb_device_reg function has been described in section 9.3.2. The apb_iobar function takes the
same arguments as the ahb_iobar function, also described in section 9.3.2.

Adding a design to GRLIB

This section explains how to add a new design to GRLIB for users who do not have access to an
already supported FPGA board. In this design, the majority of the configuration is hard-coded into the
top-level design file. The disadvantage of the method described is the loss of the convenience that the
xconfig GUI provides.

9.4.1 Overview

This example is based on the leon3-minimal design in the designs/ directory. It can be used to create a
minimalistic system for a new FPGA board with low effort. The design includes basic cores like the
LEON3 CPU, AMBA bus, memory controller and serial communication interfaces. However, the
included memory controller might have to be replaced with one that is compatible with the RAM type
on the target board. The serial communication interfaces available in this design are JTAG and UART.
The GRMON debug monitor can connect to the design through any of these interfaces.

A minimal GRLIB design requires that at least four files. They should be placed in a new directory ../
designs/<design name>.

www.cobham.com/gaisler

GRLIB IP Library

Makefile Local makefile for the design. Sets variables for synthesis and calls the main GRLIB
makefile.
config.vhd Design configuration parameters. Generated through xconfig.

leon3mp.vhd Top level VHD file. The CPU and bus peripherals are instantiated here
leon3mp.ucf Xilinx constraint file. Maps input/output ports in the top level to pins on the FPGA.

The design example further down covers how to create and modify these files for a board that has a
Xilinx FPGA. The Xilinx ISE synthesis workflow is used in the example and is valid for the majority
of Xilinx FPGAs.

The first goal in the implementation process is to get a design that it is possible to connect to with
GRMON. To achieve this the leon3mp.vhd can mostly be left untouched, but a config.vhd and Make-
file needs to be created and is covered in detail in the example. The next step is to replace or configure
the memory controller in order to make accesses the on board RAM possible. This guide only covers
in detail how to access on-board SRAM.

In order to also be able to simulate the design, the files listed below are required.

testbench.vhd Testbench VHD file for simulation. Contains an instantiation of leon3mp.vhd and
peripherals that are connected to the FPGAs pins like RAM/ROM.

prom.srec Boot prom for the simulation that starts the program in sram.srec
sram.srec Contains a test program
wave.do Adds signals to simulator wave window.

Performing a simulation increases the probability of a successful implementation on the FPGA. When
a simulation is performed the AMBA bus controller will check for violations, e.g. if two masters have
the same index. It is also suitable to set up a simulation environment in order to test if the the memory
controller is correctly configured.

9.4.2 Example: Adding a template design for Nexys4

This section describes how to use the leon3-mininal design example to create a basic design for a
board. The process covered here will make it possible to connect to the design from GRMON and to
execute programs in a LEON3 CPU. The Digilent Nexys 4 broad is used as an example.

The first step is to generate a config.vhd file that has a configuration that matches the FPGA. The eas-
iest way is to run "make xconfig" in "../designs/leon3mp/" and then copy over the config.vhd to the
design directory (e.g ../designs/leon3-minimal). In the xconfig GUI under "Synthesis" set "Target
technology" to the FPGA type. For the Nexys4 "Xilinx-Artix7" is selected. The other parameters in
the xconfig GUI are hardcoded in the top design directly. Changing them in xconfig will therefore
have no effect.

Second, the UCF constraint file should be created or downloaded. In most cases it is delivered with
the FPGA documentation. Name it leon3mp.ucf and place it in the leon3-mininal design directory.

Creating the Makefile

The "Makefile" file is required in order for the make scripts and synthesis tools to compile the right
VHDL files and create a configuration file for the correct FPGA. The structure of the Makefile exam-
ple below is aimed specifically at Xilinx FPGAs for Xilinx ISE Synthesis. Other tools and FPGAs
from other vendors do require extra parameters to be set.

In order to make this example work with another FPGA the parameters TECHNOLOGY, PART,
PACKAGE and SPEED have be changed. The possible values of these parameters can be looked up
in Xilinx ISE under Project -> Design Properties. The parameters corresponding name in the ISE
GUI is written as a comment.
GRLIB=../..

TOP=1eon3mp
TECHNOLOGY=Artix7

Path to the root folder of GRLIB

The entity name of the top design

The FPGA Family. These are listed in ISE
under Project -> Design Properties.

FPGA device name

FPGA package

FPGA speed grade (-1 is the slowest)
Combined device name

PART=XC7A100T

PACKAGE=csg324

SPEED=-2
DEVICE=$(PART)-$(PACKAGE)$(SPEED)

HHHFEHFHEHR

www.cobham.com/gaisler

GRLIB IP Library

UCF=$(TOP) .ucf # The filename of the ucf file in the design’s
directory

EFFORT=high # Effort level for Map and Place-and-Route
VHDLSYNFILES=config.vhd ahbrom.vhd \ # The VHDL files that are in the design’s directory

leon3mp.vhd
VHDLSIMFILES=testbench.vhd # The VHDL file containing the testbench
SIMTOP=testbench # The entity name of the test bench top design
CLEAN=soft-clean
TECHLIBS = unisim # unisim is used for Xilinx FPGAs

Libraries, directories and files in GRLIB that should not be compiled for this design
LIBSKIP = corel553bbc corel553brm corel553brt gr1553 corePCIF \
tmtc ihp usbhc spw
DIRSKIP = b1553 pci/pcif leon2 leon2ft crypto satcan pci leon3ft ambatest can \
usb grusbhc spacewire ascs slink hcan \
leon4 leon4v0 12cache pwm gril553b iommu
FILESKIP = grcan.vhd

include $(GRLIB)/bin/MakeTfile # Starts the main GRLIB Makefiles
include $(GRLIB)/software/leon3/Makefile

Practice used in other designs

The other designs that are included in GRLIB have their Makefile separated into two files. One in a
board directory in boards/ and one in a design directory in designs/. The boards directory is intended
to hold properties that can be shared between multiple designs for that specific board. E.g. the vari-
ables TECHNOLOGY, PART, PACKAGE, SPEED and DEVICE are instead defined in the Make-
file.inc in the boards directory. The naming convention used for the design directories is (CPU)-
(manufacturer)-(board), and the naming convention for the boards directories is (manufacturer)-
(board)-(FPGA).

A board directory will often contain the files listed.

Makefile.inc Makefile that sets variables that concern device and board organization.

default.ut FPGA Program file generation parameters for Xilinx FPGAs. The available parameters
can be found in the Xilinx ISE GUI in the "Generate Programming File" properties.

prom.cmd Command file used with iMPACT to program the proms on the board

fpga.cmd Command file used with iMPACT to program the FPGA directly

prom-ush.cmd PROM programming over USB
leon3mp.ucf Constraints file (can be placed in design directory)
default.sdc Constraints file for Synplify (can be placed in design directory)

In the Makefile in the design directory the variables like TECHNOLOGY, PART, PACKAGE,
SPEED and DEVICE are instead replaced with an include of the Makefile.inc in the board directory.

BOARD=digi lent-nexys4-xc7al00t # Directory name specific to an FPGA board
include $(GRLIB)/boards/$(BOARD)/Makefile.inc # Includes the Makefile.inc for the borad

If there exists a constraints file in the board directory it is still possible to use a constraints file that is
local to a particular design. If the the UCF variable points to the UCF file in the board directory is it is
assigned UCF=$(GRLIB)/boards/$(BOARD)/$(TOP).ucf. In order to use the local UCF in the design
directory the variable is instead assigned UCF=$(TOP).ucf.

The cmd files are scripts for iMPACT and can be generated by running it as a GUI. In the directory
from where iMPACT was started a file "_impact.cmd™ is created upon exit. It will contain the com-
mands that where executed in the GUI mode session and might require some cleanup. The cmd files
can not be overridden locally for a specific design and have to be placed in the boards directory.

Description of leon3mp.vhd

This section explains the leon3mp.vhd example file that exists in the LEON3-MINIMAL design and
the modifications have to be done to it.

The entity declaration in this leon3mp.vhd example contains the minimal number of generics and
ports. The four generics specify the technology used and are assigned in the generated config.vhd file.

entity leon3mp is

generic (
fabtech : integer := CFG_FABTECH;
memtech : integer := CFG_MEMTECH;
padtech : integer := CFG_PADTECH;
clktech : integer := CFG_CLKTECH);

www.cobham.com/gaisler

GRLIB IP Library

A minimal design needs input/output signals for at least clock, reset and communication links. In
addition, extra signals are required in order to access external RAM and boot-(EEP)ROM that vary
between different boards and memory types. All these signals have to be mapped to the correct FPGA
pins in the leon3mp.ucf file. Either the signals have to be renamed in the ucf file or in leon3mp.vhd.

port (
clk :in std_ulogic; -- FPGA main clock input
-- Buttons & LEDs
btnCpuResetn :in std_ulogic; -- Reset button
Led : out std_logic_vector(1l5 downto 0);

-- Onboard Cellular RAM

RamOE out std_ulogic;
RamWE : out std _ulogic;
RamAdv - out std_ulogic;
RamCE : out std _ulogic;
RamClk : out std_ulogic;
RamCRE - out std_ulogic;
RamLB : out std _ulogic;
RamuUB : out std_ulogic;
address : out std _logic_vector(22 downto 0);
data : inout std_logic_vector(15 downto 0);
-- USB-RS232 serial interface
RsRx :in std_logic;
RsTx - out std_logic
end;

After the port mapping follows the signal and constant declaration section. There are four constants
declared that are used to set the frequency of the LEON3 CPU and system bus.

constant clock _mult : integer := 10; -- Clock multiplier

constant clock div : integer := 20; -- Clock divider

constant BOARD_FREQ : integer := 100000; -- Clock input frequency in KHz

constant CPU_FREQ > integer := BOARD_FREQ * clock_mult / clock _div; -- CPU freq in KHz

On most boards the FPGAs input clock frequency is within 50 - 200 MHz. The Nexys4 board has an
input clock that is 100 MHz that enters through the "clk™ input signal. Therefore the BOARD_FREQ
constant is set to 100 000 kHz.

In this example the LEON3 CPU clock frequency is scaled to half the input clock frequency by set-
ting the clock multiplier to 10 and divider to 20. It is recommended to keep the system frequency low
at this stage in the development process in order to avoid a malfunctioning design because of timing
errors. The synthesis tool produces a warning in case of a timing error, but the bit file is still gener-
ated.

The frequency conversion is carried out in the "clkgen" IP-core that instantiates a DCM, PLL or an
equivalent clock generator that is suitable for the FPGA. However, the valid intervals of the multiplier
and divider parameters vary between different FPGAs, but the parameters suggested here are likely to
be valid in many cases. The new clock (50 MHz) is assigned to the "clkm" signal.

clkgen0 : clkgen

generic map (fabtech, clock mult, clock div, 0, 0, 0, 0, 0, BOARD_FREQ, 0)
port map (clk, gnd, clkm, open, open, open, open, cgi, cgo, open, open, open);

The btnCpuResetn signal originates from a button on the board and does therefore contain glitches.
Therefore the rstgen IP-core is used to create a clean reset signal named rstn. The signal that is output
when a button is pressed varies between FPGA boards. The reset button on the Nexys4 board pro-
duces a low value when pressed, and therefore the "acthigh™ generic is set to 0. If it is uncertain how
the button on the board behaves and GRMON does not connect it can be attempted to hold the reset
button while trying to connect again.

rst0 : rstgen generic map (acthigh => 0) -- Change to 1 if reset button is act high
port map (btnCpuResetn, clkm, lock, rstn, rstraw);

The easiest way to connect to the board is through a serial interface like RS-232 and/or JTAG. On Xil-
inx FPGASs JTAG is the easiest since it is just to instantiate the ahbjtag core and the Xilinx tools will
connect the input/output signals. When creating a Xilinx design the tck, tms, tdi and tdo are dummy
signals, but have to be assigned for other FPGA manufacturers. In order for GRMON to connect
through JTAG an argument needs to be passed to it that depends on the JTAG vendor (e.g "-digilent”,
"-xilusb™ or "-jtag"). Refer to the GRMON manual for more details.

ahbjtag0 : ahbjtag generic map(tech => fabtech, hindex => 3)

port map(rstn, clkm, tck, tms, tdi, tdo, ahbmi, ahbmo(3),
open, open, open, open, open, open, open, gnd);

www.cobham.com/gaisler

GRLIB IP Library

One other option is to use a serial connection which requires one input and one output signal from the
FPGA. The RsRx signal is for receiving and RsTx signal is for transmission. The RsRx and RsTx sig-
nals are assigned to the internal signals (dui.rxd and duo.txd) through pads. Each of the duo.txd and
duo.txd signals can also be mapped to leds in order to get visual feedback when there is activity.
dcomO : ahbuart generic map (hindex => 1, pindex => 4, paddr => 7)

port map (rstn, clkm, dui, duo, apbi, apbo(4), ahbmi, ahbmo(1));

dsurx_pad : inpad generic map (tech => padtech) port map (RsRx, duil.rxd);
dsutx_pad : outpad generic map (tech => padtech) port map (RsTx, duo.txd);

At this stage it is suitable to test if it is possible to connect to the FPGA with GRMON through either
JTAG or RS-232. Create the bitstream by running "make ise" and program the FPGA. When
GRMON successfully connects the remaining work is to get the on board memory working. In the
introduction chapter in the GRLIB IP Core User’s Manual, there is a table of available memory con-
trollers and their function. Since the configuration differs between various kinds of memories, the
method is explained by using the SRAM implementation as an example.

The first step would be to instantiate a memory controller. The Nexys4 has a 16-bit wide SRAM and
therefore the MCTRL is instantiated. The generic that controls where the SRAM is mapped in address
space is left at the default address 0x40000000. This is the recommended address since it is where the
binaries are uploaded by default.

srl : mctrl
generic map (hindex => 5, pindex => 0, paddr => 0, rommask => O,
iomask => 0, ram8 => 0, raml6 => 1,srbanks=>1)
port map (rstn, clkm, memi, memo, ahbsi, ahbso(5), apbi, apbo(0), wpo, open);

memi .brdyn <= 717;

memi .bexcn <= *17;

memi .writen <= *17;

memi .wrn <= "1111";

memi .bwidth <= *"01"; -- Sets data bus width for PROM accesses.

-- Bidirectional data bus
bdr : iopadv generic map (tech => padtech, width => 8)
port map (data(7 downto 0), memo.data(23 downto 16),
memo.bdrive(1l), memi.data(23 downto 16));
bdr2 : iopadv generic map (tech => padtech, width => 8)
port map (data(l5 downto 8), memo.data(31 downto 24),
memo.bdrive(0), memi.data(31 downto 24));

-- Out signals to memory
addr_pad : outpadv generic map (tech => padtech, width => 23) -- Address bus
port map (address, memo.address(23 downto 1));

oen_pad : outpad generic map (tech => padtech) -- Output Enable
port map (RamOE, memo.oen);
cs_pad : outpad generic map (tech => padtech) -- SRAM Chip select

port map (RamCE, memo.ramsn(0));
Ib_pad : outpad generic map (tech => padtech)
port map (RamLB, memo.mben(0));
ub_pad : outpad generic map (tech => padtech)
port map (RamUB, memo.mben(l1));
wri_pad : outpad generic map (tech => padtech) -- Write enable
port map (RamWE, memo.writen);

The memory data bus is bidirectional and therefore iopads controled by the MCTRL must be used.
The MCTRL has one record that contains incoming signals into the core (memi) and one record that
contains outgoing signals (memo). The memao.bdrive signal decides if the data bus is read into
memi.data or is driven with value in memo.data. Further details about the MCTRL and its signals can
be found in the GRLIB IP Core User’s Manual.

When it comes to the memo signals it is likely that some SRAM chips will not require all the memo
signals. E.g. other chips might not require the mben signals. There can also be a difference in how the
address bus functions on different boards. Since the Nexys4 board has a 16 bit wide memory bus
accesses are done in 2 byte blocks. The LSB address bit in the memo.address is therefore not assigned
to the address bus. However another board could have an 8 bit PROM and a 32 bit SRAM and would
therefore require the LSB address bit in order to access the PROM.

After the memory controller has been added the design it is suggested to do a simulation. Then create
a new configuration file and program the FPGA. The first goal when trying to implement memory
access is to be able to write to the memory and detect that something changed from before. In this
development phase it is suitable to use long memory latencies in order to ensure that a failure is not
related to incorrect timings.

It is possible to set the various timings for the MCTRL core through GRMON. Since in this example
the MCTRL is used together with SRAM the read and write latency of the SRAM can be set by pass-
ing "-ramrws 3" and "-ramwws 3" as arguments when starting GRMON.

www.cobham.com/gaisler

GRLIB IP Library

The memory contents can be shown in GRMON with the command "mem 0x40000000" and written
with "wmem 0x40000000 0x12345678". If it appears that the data in the memory is changing but is
irregular it is suggested to zero out all the memory using "wash 0x40000000 0x410000000" in
GRMON. Thereafter perform one write and observe. If the data changes at the right address but is
incorrect it is likely that the timing is wrong. If the data instead appears partially correct but is spread
out over multiple words in memory the addressing is likely to be incorrect.

One other RAM alternative is to use the block RAM on the FPGA by instantiating the AHBRAM [P-
core. The maximum size might range from 100 kB up to a few MB depending on the amount of block
RAM available. The Nexys4 boards FPGA has 512 kB of block RAM in total, which is sufficient for
many applications.

Simulation test bench

A testbench is provided in the LEON3-MINIMAL design directory. This section describes what areas
of the simulation have to be modified to match different FPGA boards and how a test bench in the
GRLIB is constructed in general.

The major advantage of setting up a simulation is the ability to find errors in the design before
attempting the time consuming generation of the FPGA bitstream. A successful simulation will not
guarantee that the FPGA design works but will increase the probability of a successful hardware
implementation. See the implementation flow chapter in this document on how to compile and start a
simulation with your simulation software.

Having a simulation for a design makes it possible to test that the memory controller is set up cor-
rectly and that input and output signals from the FPGA design are assigned with the correct function.
Although if an input or output signal in the top level design is incorrectly mapped in the constraints
file, the error will not be detected through simulation. Some types of miss configurations and incor-
rect signal assignments in the FPGA design will also be detected. For example at the simulation start
the various bus controllers in the system will generate and error if any of the masters or slaves have
colliding bus indexes or if slaves address mapping overlap.

The test bench is defined in the testbench.vhd file that is provided in the design directory. In it the top
level design from the leon3mp.vhd file is instantiated together with on board peripherals like simula-
tion models for SRAM. For examples how to use other RAM simulation models than SRAM refer to
the test benches from other designs.

d3 : entity work.leon3mp
generic map (fabtech, memtech, padtech, clktech, disas, dbguart, pclow)

port map (
clk => clKk,
btnCpuResetn => rstn,
-- PROM
address => address(22 downto 0),
data => data(31 downto 16),
RamOE => oen,
RamWE => writen,
RamCE => RamCE,
-- AHB Uart
RsRx => dsurx,
RsTx => dsutx,

-- Output signals for LEDs
led => led

-- Memory Simulation Models
sramO0 : sram
generic map (index => 4, abits => 24, fname => sdramfile)
port map (address(23 downto 0), data(31 downto 24), RamCE, writen, oen);

sraml : sram
generic map (index => 5, abits => 24, fname => sdramfile)
port map (address(23 downto 0), data(23 downto 16), RamCE, writen, oen);

By default a test bench in the design folder execute a small system test program in the LEON proces-
sor. Upon simulation start the SRAM is loaded with a binary from an SREC file, usually named
"ram.srec”, which contains a test program. The file name is not assigned directly the to SRAM model
but rather through a constant named sdramfile or sramfile for convenience. It is possible to execute
most other binaries in simulation too as log as the binary is contained in an SREC file. The other
binary can then be simulated by changing the sdramfile constant to point its SREC file.

www.cobham.com/gaisler

GRLIB IP Library

9.5

Since the Nexys4 has a 16 bit wide data bus two 8-bit SRAM models are instantiated. Their index
generic is set to four and five, which sets the SRAM models to behave appropriately for a 16-bit wide
data bus. For a 32 bit data bus four SRAM models would be instantiated with their indexes assigned
between zero and three. An 8 bit wide data bus would require one SRAM model instantiation that has
its index generic set to six. Examples of all these configuration can be found in test benches for other
designs.

Before the program in RAM is executed the processor boots from a ROM. It contains a small initial-
ization program that clears registers and setups design specific configuration. This process is used to
configure the LEON system simulation. However, when running on the design on the FPFGA a PROM
is not required since the configuration can be applied though GRMON.

The ROM can be instantiated in two ways depending on if the FPGA board has on board PROM or
not. If there is no on board PROM the ROM is instantiated as an AHB slave with the AHBROM IP
core in the leon3mp.vhd. The ROM is thus also instantiated in the FPGA design. Since there is no on
board PROM on the Nexys4 the AHBROM method is used in the example directory.

brom : entity work.ahbrom

generic map (hindex => 6, haddr => CFG_AHBRODDR, pipe => CFG_AHBROPIP)
port map (rstn, clkm, ahbsi, ahbso(6));

If there is a PROM on board it is added to the testbench.vhd and accessed though the same address
and data bus as the SRAM. The PROM is also instantiated with the SRAM simulation model since the
PROM read accesses are performed in the same way as for SRAM. The SRAM simulation model that
is used as a PROM is instead loaded with the "prom.srec” file.

Before it is possible to generate the ram.srec, prom.srec and ahbrom.vhd it is necessary to have valid
prom.h and systest.c files in the design directory, which are provided. The systest.c file contains the
main function which then calls different test modules. In this test bench example it does only perform
a basic test and does not require modifications.

The prom.h file contains constants that are applied to various configuration registers in the LEON
system during the boot. At this stage the MCTRL memory controller is being configured to properly
access the SRAM. The data written into the MCTRL registers is defined by the constants MCFG1,
MCFG2 and MCFG3 and correspond to three of the memory controllers registers. The SRAM is con-
figured through the MCFG2 constant and is used to set the data bus width and data access latency etc.
The register is described in further detail in the GRLIB IP Core User’s Manual. In order to configure
other memory controllers and memory types it might be necessary to add or modify a constant in
prom.h.

The generation of the sram.srec and prom.srec files is done be by running "make soft". To generate
the AHBROM IP core run "make ahbrom.vhd", which will create the ahbrom.vhd file.

Within the testbench.vhd there is a section that asserts the processor’s error signal, which indicates if
the CPU entered the error state. In the leon3mp top level design this signal is assigned to the on board
led(3) and made active high. If the led(3) signal ever goes high the simulation will immediately stop.
If an error occurs because of miss configured RAM the AHB address bus (ahbsi.haddr) will give a
hint when and at what address a faulty data access occurred.

led(3) <= °L7; -- ERROR pull-down
error <= not led(3);

iuerr : process
begin
wait for 5 us;
assert (to_XOl(error) = ’17)
report "*** IU in error mode, simulation halted ***"
severity failure;
end process;

Within the leon3mp top level design a test reporting unit is instantiated. When the simulation runs, the
test reporting unit will print to the console whether the various test modules in the test program suc-
ceed or not. Notice that the --pragma translate on/off will remove the unit from the hardware synthesis
but will leave it in the simulation.
--pragma translate_off

testO : ahbrep generic map (hindex => 4, haddr => 16#200%#)

port map (rstn, clkm, ahbsi, ahbso(4));
--pragma translate_on

Using verilog code

Verilog does not have the notion of libraries, and although some CAD tools supports the compilation
of verilog code into separate libabries, this feature is not provided in all tools. Most CAD tools how-

www.cobham.com/gaisler

GRLIB IP Library

9.6

ever support mixing of verilog and VHDL, and it is therefore possible to add verilog code to the work
library. Adding verilog files is done in the same way as VHDL files, except that the verilog file names
should appear in vlogsyn.txt and vliogsim.txt.

The basic steps for adding a synthesizable verilog core are:

= Create a directory and add it to libs.txt and dirs.txt as described in section 9.2, or use an existing directory.
eList the verilog files in a vlogsyn.txt file located in the selected directory

*(Create a VHDL component declaration for the verilog top-level

In case the verilog IP core will be instantiated directly in the design, the component can be added to a
package. This package can then be referenced in the design’s top-level and the verilog core can be
instantiated using the VHDL component.

In case the verilog IP core has an AMBA interface, it will likely require wrapping in order to add the
GRLIB AMBA plug&play signals. To do this, the procedure described in section 9.3.1 can be used,
where the ieee_example component declaration would be the VHDL component for the verilog IP
core.

As mentioned above, all CAD tools may not support compiling verilog code into a library. Should the
strategy above not work, another option is to list the verilog files in the VERILOGSYNFILES variable
defined in the (template) design’s Makefile and to create the VHDL component of the verilog IP core
in the design’s top-level.

Other issues that may arise include propagation problems of VHDL generics to Verilog parameters
(issues crossing the language barrier). Many tools handle propagation of integer and string values cor-
rectly. Should there be any problems, it is recommended to change the Verilog code to remove the
parameters.

Preliminary SystemVerilog support is available in selected tools, namely Mentor Graphics ModelSim,
Altera Quartus Il and Synopsys Synplify. SystemVerilog files should be added to svlogsyn.txt and
svlogsim.txt in a way analogous to the one used for regular Verilog files described above. SystemVer-
ilog simulation and synthesis is still experimental.

Adding portabilty support for new target technologies

9.6.1 General

New technologies to support portability can be added to GRLIB without the need to modify any pre-
viously developed designs. This is achieved by technology independent encapsulation of components
such as memories, pads and clock buffers. The technology mapping is organized as follows:

*AVHDL library with the technology simulation models is placed in lib/tech/library

*\Wrappers for memory, pads, PLL and other cells are placed under lib/techmap/library

= All “virtual’ components with technology mapping are placed in lib/techmap/maps

*Declaration of all ‘virtual’ components and technologies is made in lib/techmap/gencomp/gencomp.vhd

An entity that uses a technology independent component needs only to make the techmap.gencomp
package visible, and can then instantiate any of the mapped components.

9.6.2 Adding a new technology

A new technology is added in four steps. First, a VHDL library is created in the lib/tech/library loca-
tion. Secondly, a package containing all technology specific component declarations is created and
the source code file name is added to the ‘vhdlsyn.txt’ or ‘vlogsyn.txt’ file. Third, simulation models
are created for all the components and the source file names are added to the ‘vhdlsim.txt” or ‘vlog-
sim.txt” file. A technology constant is added to the GENCOMP package defined in the TECHMAP
library. The library name is not put in lib/libs.txt but added either to the FPGALIBS or ASICLIBS in
bin/Makfile.

The technology library part is completed and the components need to be encapsulated as described in
the next section. As an example, the ASIC memories from Virage are defined in the VIRAGE library,
located in the lib/virage directory. The component declarations are defined in the VCOMPONENTS
package in the virage_vcomponents.vhd file. The simulation models are defined in virage_sim-
prims.vhd.

www.cobham.com/gaisler

GRLIB IP Library

9.6.3 Encapsulation

Memories, pads and clock buffers used in GRLIB are defined in the TECHMAP library. The encapsu-
lation of technology specific components is done in two levels.

The lower level handles the technology dependent interfacing to the specific memory cells or macro
cells. This lower level is implemented separately for each technology as described hereafter.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the lower
level. The entity declarations are technology independent and have similar interfaces with only minor
functional variations between technologies. The architectures are used for instantiating, configuring
and interfacing the memory cells or macro cells defined for the technology.

A package is created for each component type containing component declarations for the aforemen-
tioned entities. Currently there is a separate memory, pad and clock buffer package for each technol-
ogy. The components in these packages are only used in the higher level, never directly in the designs
or IP cores.

The higher level defines a technology independent interface to the memory, pad or clock buffer. This
higher level is implemented only once and is common to all technologies.

For each general type of memory, pad or clock buffer, an entity/architecture is created at the higher
level. The entity declarations are technology independent. The architectures are used for selecting the
relevant lower level component depending on the value of the tech and memtech generics.

A package is created for each component type containing component declarations for the aforemen-
tioned entities. Currently there is a separate memory, pad and clock buffer package. The components
declared in these packages are used in the designs or by other IP cores. The two level approach allows
each technology to be maintained independently of other technologies.

9.6.4 Memories

The currently defined memory types are single-port, dual-port, two-port and triple-port synchronous
RAM. The encapsulation method described in the preceding section is applied to include a technology
implementing one of these memory types.

For example, the ASIC memory models from Virage are encapsulated at the lower level i the 11b/
tech/techmap/virage/mem_virage gen.vhd file. Specifically, the single-port RAM is
defined in the VIRAGE_SYNCRAM entity:

entity virage_syncram is

generic (
abits : integer := 10;
dbits : integer = 8);

port (
clk - in std_ulogic;
address : in std_logic_vector(abits -1 downto 0);
datain : in std_logic_vector(dbits -1 downto 0);
dataout : out std_logic_vector(dbits -1 downto 0);
enable > in std_ulogic;
write > in std_ulogic);

end;

The corresponding architecture instantiates the Virage specific technology specific memory cell, e.g.
hdss1l_256x32cm4sw0 shown hereafter:

architecture rtl of virage_syncram is

signal d, g, gnd : std_logic_vector(35 downto 0);

signal a : std_logic_vector(17 downto 0);

signal vcc : std_ulogic;

constant synopsys_bug : std_logic_vector(37 downto 0) := (others => "0%);
begin

gnd <= (others => "0"); vcc <= "17;

a(abits -1 downto 0) <= address;

d(dbits -1 downto 0) <= datain(dbits -1 downto 0);
a(1l7 downto abits) <= synopsys_bug(17 downto abits);
d(35 downto dbits) <= synopsys_bug(35 downto dbits);
dataout <= q(dbits -1 downto 0);

q(35 downto dbits) <= synopsys_bug(35 downto dbits);

a8d32 : if (abits = 8) and (dbits <= 32) generate
id0 : hdssl_256x32cm4swO
port map (a(7 downto 0), gnd(7 downto 0),clk,
d(31 downto 0), gnd(31 downto 0), q(31 downto 0),
enable, vcc, write, gnd(0), gnd(0), gnd(0), gnd(0), gnd(0));
end generate;

en&-}tl;

www.cobham.com/gaisler

GRLIB IP Library

The lib/tech/techmap/virage/mem_virage.vhd file contains the corresponding compo-
nent declarations in the MEM_VIRAGE package.

package mem_virage is
component virage_syncram

generic (
abits : integer := 10;
dbits : integer := 8);

port (
clk 1 in std_ulogic;
address : in std_logic_vector(abits -1 downto 0);
datain : in std_logic_vector(dbits -1 downto 0);
dataout : out std_logic_vector(dbits -1 downto 0);
enable - in std_ulogic;
write > in std_ulogic);

end component;
end;

The higher level single-port RAM model SYNCRAM is defined in the lib/gaisler/maps/
syncram.vhd file. The entity declaration is technology independent:

entity syncram is

generic (
tech : integer := 0;
abits : integer := 6;
dbits : integer := 8);

port (
clk : in std_ulogic;
address : in std_logic_vector((abits -1) downto 0);
datain > in std_logic_vector((dbits -1) downto 0);
dataout : out std_logic_vector((dbits -1) downto 0);
enable - in std_ulogic;
write > in std_ulogic);

end;

The corresponding architecture implements the selection of the lower level components based on the
MEMTECH or TECH generic:

architecture rtl of syncram is
begin
inf : if tech = infered generate
uO : generic_syncram generic map (abits, dbits)
port map (clk, address, datain, dataout, write);
end generate;

vir : if tech = memvirage generate
u0 : virage_syncram generic map (abits, dbits)
port map (clk, address, datain, dataout, enable, write);
end generate;

end;
The 1ib/tech/techmap/gencomp/gencomp . vhd file contains the corresponding component
declaration in the GENCOMP package:

package gencomp is
component syncram

generic (
tech : integer := 0;
abits : integer := 6;
dbits : integer := 8);

port (
clk > in std_ulogic;
address : in std_logic_vector((abits -1) downto 0);
datain - in std_logic_vector((dbits -1) downto 0);
dataout : out std_logic_vector((dbits -1) downto 0);
enable : in std_ulogic;
write - in std_ulogic);

end component;
end;
The GENCOMP package contains component declarations for all portable components, i.e. SYN-
CRAM, SYNCRAM_DP, SYNCRAM_2P and REGFILE_3P.

9.6.5 Pads

The currently defined pad types are in-pad, out-pad, open-drain out-pad, 1/0-pad, open-drain 1/0 pad,
tri-state output-pad and open-drain tri-state output-pad. Each pad type comes in a discrete and a vec-
torized version.

www.cobham.com/gaisler

GRLIB IP Library

9.7

The encapsulation method described in the preceding sections is applied to include a technology
implementing these pad types.

The file structure is similar to the one used in the memory example above. The pad related files are
located in grlib/lib/tech/techmap/maps. The grlib/1ib/tech/techmap/gen-
comp/gencomp . vhd file contains the component declarations in the GENCOMP package.

9.6.6 Clock generators

There is currently only one defined clock generator types named CLKGEN.

The encapsulation method described in the preceding sections is applied to include a technology
implementing clock generators and buffers.

The file structure is similar to the one used in the memory example above. The clock generator related
files are located in grlib/lib/tech/techmap/maps. The CLKGEN component is declared in the GEN-
COMP package.

Extending the xconfig GUI configuration

9.7.1 Introduction

Each template design has a simple graphical configuration interface that can be started by issuing
make xconfig in the template design directory. The tool presents the user with configuration options
and generates the file config.vhd that contains configuration constants used in the design.

The subsections below describe how to create configuration menus for a core and then how to include
these new options in xconfig for an existing template design.

9.7.2 1P core xconfig files

Each core has a set of files that are used to generate the core’s xconfig menu entries. As an example
we will look at the GRGPIO core’s menu. The xconfig files are typically located in the same directory
as the core’s HDL files (but this is not a requirement). For the GRGPIO core the xconfig files are:

$ Is lib/gaisler/misc/grgpio.in.*

lib/gaisler/misc/grgpio.in
lib/gaisler/misc/grgpio.in.h
lib/gaisler/misc/grgpio.in_help
lib/gaisler/misc/grgpio.in.vhd

We will start by looking at the grgpio.in file. This file defines the menu structure and options for the
GRGPIO core:

bool "Enable generic GPIO port " CONFIG_GRGPI0O_ENABLE
if ["$CONFIG_GRGPIO_ENABLE"™ = "y" 7]; then

int "GP10 width " CONFIG_GRGPIO_WIDTH 8

hex "GPIO interrupt mask " CONFI1G_GRGP10_IMASK 0000
fi

The first line defines a boolean option that will be saved in the variable CONFIG_GRGPIO_EN-
ABLE. This will be rendered as a yes/no question in the menu. If this constant is set to yes (‘y’) then
the user will be able to select two more configuration options. First the width, which is defined as an
integer (int), and the interrupt mask which is defined as a hexadecimal value (hex).

The GUI has a help option for each item in the menu. When a user clicks on the help button a help text
can be optionally displayed. The contents of the help text boxes is defined in the file that ends with
.in.help, in this case grgpio.in.help:

GP10 port

CONFI1G_GRGPI10_ENABLE
Say Y here to enable a general purpose 1/0 port. The port can be
configured from 1 - 32 bits, whith each port signal individually
programmable as input or output. The port signals can also serve
as interrupt inputs.

GPIO port witdth
CONFIG_GRGPIO_WIDTH
Number of bits in the 1/0 port. Must be in the range of 1 - 32.

GPI0O interrupt mask
CONFIG_GRGPI0_IMASK

www.cobham.com/gaisler

GRLIB IP Library

The 1/0 port interrupt mask defines which bits in the 1/0 port
should be able to create an interrupt.

As can be seen above, each help entry consists of a topic, the name of the variable used in the menu
and the help text.

The two remaining files (grgpio.in.h and grgpio.in.vhd) are used when generating the config.vhd file
for a design. config.vhd typically consists of a set of lines for each core where the first line decides if
the core should be instantiated in the design and the following lines contain configuration options. For
the GRGPIO core, the file grgpio.in.vhd defines that the following constants should be included in
config.vhd:
-- GPIO port

constant CFG_GRGPIO_ENABLE : integer :

constant CFG_GRGPIO_IMASK : integer :
constant CFG_GRGPIO_WIDTH : integer :

CONFIG_GRGP10_ENABLE;
16#CONFIG_GRGP10_IMASK#;
CONFIG_GRGPI0O_WIDTH;

In the listing above, we see a mix of VHDL and the constants defined in the menus (see listing for
grgpio.in above). The value we select for CONFIG_GRPIO_ENABLE will be assigned to the VHDL
constant CFG_GRGPIO_ENABLE. In the menu we defined CONFIG_GRGPIO_IMASK as a hexa-
decimal value. The VHDL notation for this is to enclose the value in 16#..# and this is done for the
CFG_GRGPIO_IMASK constant.

When exiting the xconfig tool, the .in.vhd files for all cores will be concatenated into one file. Then a
pre-processor will be used to replace all the variables defined in the menus (for instance CON-
FIG_GRGPIO_ENABLE) into the values they represent. In this process, additional information is
inserted via the .in.vhd.h files. The contents of grgpio.in.h is:

#ifndef CONFIG_GRGPIO_ENABLE
#define CONFIG_GRGPIO_ENABLE O
#endif

#ifndef CONFIG_GRGPIO_IMASK
#define CONFIG_GRGPIO_IMASK 0000
#endif

#ifndef CONFIG_GRGPIO_WIDTH
#define CONFIG_GRGPIO_WIDTH 1
#endif

This file is used to guarantee that the CONFIG_ variable always exist and are defined to sane values.
If a user has disabled CONFIG_GRGPIO_ENABLE via the configuration menu, then this variable
and all the other GRGPIO variables will be undefined. This would result in a config.vhd entry that
looks like:
-- GPIO port

constant CFG_GRGPIO_ENABLE : integer :

constant CFG_GRGPIO_IMASK : integer :

16##;
constant CFG_GRGPIO_WIDTH : integer := ;

... and lead to errors during compilation. This is prevented by grgpio.in.h above, where all undefined
variables are defined to sane values. It is also possible to place additional intelligence in the .in.h file
where dependencies between variables can be expressed in ways that would be complicated in the
menu definition in the .in file.

9.7.3 xconfig menu entries

The menu entries to include in xconfig is defined for each template design in the file config.in. As an
example we will look at the config.in file for the design leon3-gr-xc3s-1500. In designs/leon3-gr-
xc3s-1500/config.in we find the entry for the GRGPIO port (described in the previous section) as part
of one of the submenus:

mainmenu_option next_comment

comment “UART, timer, 1/0 port and interrupt controller”
source lib/gaisler/uart/uartl.in
if ["$CONFIG_DSU_UART™"™ 1= "y" 7]; then

source lib/gaisler/uart/uart2.in

fi
source lib/gaisler/leon3/irgmp.in
source lib/gaisler/misc/gptimer.in
source lib/gaisler/misc/grgpio.in

endmenu

www.cobham.com/gaisler

GRLIB IP Library

These lines will create a submenu named UART, timer, 1/O port and interrupt controller and under
this submenu include the options for the two UART cores, interrupt controller, timer unit and GPIO
port. When the .in file for a core is specified in config.in, the xconfig tool will automatically also use
the corresponding .in.h and .in.vhd files when generating the config.vhd file.

9.7.4 Adding new xconfig entries

In this section we will extend the menu in the leon3-gr-xc3s-1500 design to include configuration
options for one additional core. Note that adding xconfig entries does not include IP core HDL files in
the list of files to be synthesized for a design. See section 9.3 for information on adding the HDL files
of an IP core to GRLIB.

When we start, the config.in file for leon3-gr-xc3s-1500 has the following contents around the inclu-
sion of GRGPIO:

mainmenu_option next_comment

comment “UART, timer, 1/0 port and interrupt controller”
source lib/gaisler/uart/uartl.in
if ["$CONFIG_DSU_UART™"™ 1= "y" 7]; then

source lib/gaisler/uart/uart2.in

fi
source lib/gaisler/leon3/irgmp.in
source lib/gaisler/misc/gptimer.in
source lib/gaisler/misc/grgpio.in

endmenu

and the config.vhd file has the following entries (also just around the GRGPIO port):

-- GPIO port
constant CFG_GRGPIO_ENABLE : integer := 1;
constant CFG_GRGPIO_IMASK : integer := 16#0000%#;
constant CFG_GRGPIO_WIDTH : integer := (8);

-- Spacewire interface

The core that we will add support for is the I2C2AHB core. We start by making copies of the existing
configuration files for the GRGPIO core (described in section 9.7.2) and modify them for I2C2AHB.
The resulting files are listed below:

i2c2ahb.in:
bool "Enable 12C to AHB bridge " CONFIG_I12C2AHB
if ["$CONFIG_I2C2AHB" = "y"]; then
bool “Enable APB interface " CONFIG_I12C2AHB_APB

hex "AHB protection address (high) * CONFIG_12C2AHB_ADDRH 0000
hex “AHB protection address (low) " CONFIG_I12C2AHB_ADDRL 0000
hex “AHB protection mask (high) * CONFIG_I12C2AHB_MASKH 0000
hex “AHB protection mask (low) * CONFIG_I12C2AHB_MASKL 0000
bool "Enable after reset * CONFIG_I2C2AHB_APB
hex "12C memory address * CONFIG_I12C2AHB_SADDR 50
hex "12C configuration address " CONFIG_I12C2AHB_CADDR 51

fi

i2c2ahb.in.help:

GRLIB I12C2AHB core
CONFI1G_12C2AHB
Say Y here to enable 12C2AHB

CONFI1G_12C2AHB_APB
Say Y here to configure the core®s APB interface

CONFI1G_12C2AHB_ADDRH
Defines address bits 31:16 of the core®s AHB protection area

. and so on ..

i2c2ahb.in.vhd:
-- 12C to AHB bridge

constant CFG_I12C2AHB : integer := CONFIG_I12C2AHB;

constant CFG_I12C2AHB_APB > integer := CONFIG_I12C2AHB_APB;
constant CFG_12C2AHB_ADDRH o integer := 16#CONFIG_I12C2AHB_ADDRH#;
constant CFG_12C2AHB_ADDRL : integer := 16#CONFIG_12C2AHB_ADDRL#;
constant CFG_I12C2AHB_MASKH o integer := 16#CONFIG_12C2AHB_MASKH#;
constant CFG_12C2AHB_MASKL o integer := 16#CONFIG_I12C2AHB_MASKL#;

www.cobham.com/gaisler

GRLIB IP Library

constant CFG_12C2AHB_RESEN > integer :
constant CFG_I12C2AHB_SADDR > integer :
constant CFG_I12C2AHB_CADDR > integer :
constant CFG_I12C2AHB_FILTER : integer :

CONFIG_12C2AHB_RESEN;
16#CONF1G_12C2AHB_SADDR#;
16#CONF1G_12C2AHB_CADDR#;
CONFIG_12C2AHB_FILTER;

i2c2ahb.in.h:

#ifndef CONFIG_I12C2AHB

#define CONFIG_12C2AHB 0O
#endif

#ifndef CONFIG_I12C2AHB_APB
#define CONFIG_12C2AHB_APB 0O
#endif

#ifndef CONFIG_I12C2AHB_ADDRH
#define CONFIG_12C2AHB_ADDRH O
#endif

#ifndef CONFIG_I12C2AHB_ADDRL
#define CONFIG_12C2AHB_ADDRL O
#endif

#ifndef CONFIG_I12C2AHB_MASKH
#define CONFIG_12C2AHB_MASKH O
#endif

#ifndef CONFIG_I12C2AHB_MASKL
#define CONFIG_12C2AHB_MASKL O
#endif

#ifndef CONFIG_I12C2AHB_RESEN
#define CONFIG_12C2AHB_RESEN O
#endif

#ifndef CONFIG_I12C2AHB_SADDR
#define CONFIG_12C2AHB_SADDR 50
#endif

#ifndef CONFIG_12C2AHB_CADDR
#define CONFIG_12C2AHB_CADDR 51
#endif

#ifndef CONFIG_I12C2AHB_FILTER
#define CONFIG_12C2AHB_FILTER 2
#endif

Once we have the above files in place, we will modify designs/leon3-gr-emaxc3s-1500/config.in so
that I2C2AHB is also included. The resulting entries in config.in looks like:

mainmenu_option next_comment

comment “UART, timer, 1/0 port and interrupt controller”
source lib/gaisler/uart/uartl.in
if ["$CONFIG_DSU_UART"™ 1= "y" 7; then

source lib/gaisler/uart/uart2.in

fi
source lib/gaisler/leon3/irgmp.in
source lib/gaisler/misc/gptimer.in
source lib/gaisler/misc/grgpio.in
source lib/gaisler/misc/i12c2ahb.in

endmenu

Where the inclusion of i2c2ahb.in is made just before the endmenu statement.

We can now issue make xconfig in the template design directory to rebuild the graphical menu:

user@host:~/GRLIB/designs/leon3-gr-xc3s-1500$% make xconfig

make main.tk

make[1]: Entering directory ~/home/user/GRLIB/designs/leon3-gr-xc3s-1500"
gcc -g -c ../../bin/tkconfig/tkparse.c

gcc -g -c¢ ../../bin/tkconfig/tkcond.c

gcc -g -c¢ ../../bin/tkconfig/tkgen.c

gcc -g tkparse.o tkcond.o tkgen.o -0 tkparse.exe

./tkparse.exe config.in ../.. > main.tk

make[1]: Leaving directory ~/home/user/GRLIB/designs/leon3-gr-xc3s-1500*
cat ../../bin/tkconfig/header.tk main.tk ../../bin/tkconfig/tail._tk > lconfig.tk
chmod a+x lconfig.tk

As can be seen from the output above, the change of config.in triggered a re-build of tkparse.exe and
Iconfig.tk. tkparse.exe is used to parse the .in files and Iconfig.tk is what is executed when issuing
make xconfig. In order to rebuild tkparse.exe the system must have a working copy of the GNU C
compiler installed.

Under some circumstances the menus may not be rebuilt after config.in has been modified. If this
happens try to issue touch config.in or remove the file Iconfig.tk.

Now that the xconfig menus have been re-built we can check under Peripherals > UART, timer, 1/O
port and interrupt controller to see our newly added entries for the I2C2AHB core. Once we save and
exit the xconfig tool a new config.vhd file will be generated that now also contains the constants
defined in i2c2ahb.in.vhd:

www.cobham.com/gaisler

GRLIB IP Library

-- GPIO port
constant CFG_GRGPIO_ENABLE : integer := 1;

constant CFG_GRGPIO_IMASK : integer := 16#0000%#;
constant CFG_GRGPIO_WIDTH : integer := (8);

-- 12C to AHB bridge
constant CFG_I2C2AHB : integer := O;
constant CFG_I12C2AHB_APB : integer := O;
constant CFG_I12C2AHB_ADDRH : integer := 16#0#;
constant CFG_12C2AHB_ADDRL : integer := 16#0#;
constant CFG_I12C2AHB_MASKH : integer := 16#0#;
constant CFG_I12C2AHB_MASKL : integer := 16#0#;
constant CFG_I12C2AHB_RESEN : integer := O;
constant CFG_I12C2AHB_SADDR : integer := 16#50%#;
constant CFG_I12C2AHB_CADDR : integer := 16#51#;

constant CFG_12C2AHB_FILTER : integer := 2;

-- Spacewire interface

These constants can now be used in all files that include the work.config VHDL package.

9.7.5 Other uses and limitations

There is nothing IP core specific in xconfig. Local copies of configuration files (*.in*) can be created
in the template design directory to create constants that are used to control other aspects of the design
and not just IP core configuration.

The graphical interface provided by xconfig can ease configuration but the tool has several limitations
that designers must be aware of:

1. When configuration options are saved and xconfig is exited, the config.vhd file is overwritten.
2. When a core is disabled, the present configuration is not restored when the core is re-enabled.
3. The tool does not provide a good solution for multiple instances of the same core.

The last item means that xconfig can not be used to configure two separate instances of the same core
(unless the cores should have the exact same configuration, if this is the case the same set of con-
fig.vhd constants can be used in several instantiations). It is not possible to just include the same .in
file several times in config.in. This will lead to constants with the same name being created in con-
fig.vhd. One option is to make a local copy of a core’s configuration files (*.in*) and place them in the
template design directory. The local copies can then be edited to have all their variable names
changed (for instance by adding a 2 to the end of the variable names) and a reference to the local files
can be added to config.in. This way a separate set of menu items, that will affect a separate set of con-
stants in config.vhd, can be included.

www.cobham.com/gaisler

GRLIB IP Library

GRLIB, Jan 2016, Version 1.5.0 99 www.cobham.com/gaisler

GRLIB IP Library

Cobham Gaisler AB
Kungsgatan 12

411 19 Goteborg

Sweden
www.cobham.com/gaisler
sales@gaisler.com

T: +46 31 7758650

F: +46 31 421407

Cobham Gaisler AB, reserves the right to make changes to any products and services described herein at any
time without notice. Consult Cobham or an authorized sales representative to verify that the information in
this document is current before using this product. Cobham does not assume any responsibility or liability
arising out of the application or use of any product or service described herein, except as expressly agreed to
in writing by Cobham; nor does the purchase, lease, or use of a product or service from Cobham convey a
license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Cobham
or of third parties. All information is provided as is. There is no warranty that it is correct or suitable for any
purpose, neither implicit nor explicit.

Copyright © 2016 Cobham Gaisler AB

GRLIB, Jan 2016, Version 1.5.0 100 of 100 www.cobham.com/gaisler

	1 Introduction
	1.1 Scope
	1.2 Other resources
	1.3 Overview
	1.4 Library organization
	1.5 On-chip bus
	1.6 Distributed address decoding
	1.7 Interrupt steering
	1.8 Plug&Play capability
	1.9 Portability
	1.10 Available IP cores
	1.11 Versions
	1.12 Licensing

	2 Installation
	2.1 Installation
	2.2 Upgrading
	2.3 Directory organization
	2.4 Host platform support
	2.4.1 Linux
	2.4.2 Windows with Cygwin

	2.5 Installation of simulation libraries
	2.5.1 Installation of Altera libraries
	2.5.2 Installation of Microsemi libraries
	2.5.3 Installation of Xilinx libraries
	2.5.4 Installation of DARE+ libraries

	3 LEON3 quick-start guide
	3.1 Introduction
	3.2 Overview
	3.3 Configuration
	3.4 Simulation
	3.5 Synthesis and place&route
	3.6 Simulation of post-synthesis netlist
	3.7 Board re-programming
	3.8 Running applications on target
	3.9 Flash PROM programming
	3.10 Software development

	4 Implementation flow
	4.1 Introduction
	4.2 Using Makefiles and generating scripts
	4.3 Simulating a design
	4.3.1 Overview
	4.3.2 GRLIB_SIMULATOR environment variable

	4.4 Synthesis and place&route
	4.5 Skipping unused libraries, directories and files
	4.6 Encrypted RTL
	4.7 Tool-specific usage
	4.7.1 GNU VHDL (GHDL)
	4.7.2 Cadence ncsim
	4.7.3 Mentor FormalPro
	4.7.4 Mentor ModelSim
	4.7.5 Aldec Active-HDL
	4.7.6 Aldec ALINT
	4.7.7 Aldec Riviera
	4.7.8 Synthesis with Synplify
	4.7.9 Synthesis with Mentor Precision
	4.7.10 Actel Designer
	4.7.11 Actel Libero
	4.7.12 Altera Quartus
	4.7.13 Xilinx ISE
	4.7.14 Xilinx PlanAhead
	4.7.15 Xilinx Vivado
	4.7.16 Lattice ISP Tools
	4.7.17 Synthesis with Synopsys Design Compiler
	4.7.18 Synthesis with Cadence RTL Compiler
	4.7.19 eASIC eTools

	4.8 XGrlib graphical implementation tool
	4.8.1 Introduction
	4.8.2 Simulation
	4.8.3 Synthesis
	4.8.4 Place & Route
	4.8.5 Additional functions

	5 GRLIB Design concept
	5.1 Introduction
	5.2 AMBA AHB on-chip bus
	5.2.1 General
	5.2.2 AHB master interface
	5.2.3 AHB slave interface
	5.2.4 AHB bus control
	5.2.5 AHB bus index control
	5.2.6 Support for wide AHB data buses

	5.3 AHB plug&play configuration
	5.3.1 General
	5.3.2 Device identification
	5.3.3 Address decoding
	5.3.4 Cacheability
	5.3.5 Interrupt steering

	5.4 AMBA APB on-chip bus
	5.4.1 General
	5.4.2 APB slave interface
	5.4.3 AHB/APB bridge
	5.4.4 APB bus index control

	5.5 APB plug&play configuration
	5.5.1 General
	5.5.2 Device identification
	5.5.3 Address decoding
	5.5.4 Interrupt steering

	5.6 GRLIB configuration package
	5.7 Technology mapping
	5.7.1 General
	5.7.2 Memory blocks
	5.7.3 Pads

	5.8 Scan test support
	5.8.1 Overview
	5.8.2 GRLIB support
	5.8.3 Usage for existing cores
	5.8.4 Usage for new cores
	5.8.5 Configuration options

	5.9 Support for integrating memory BIST
	5.9.1 Syncram level
	5.9.2 IP core level
	5.9.3 Design level

	6 GRLIB Design examples
	6.1 Introduction
	6.2 LEON3MP
	6.3 LEON3ASIC
	6.3.1 Modification of GRLIB Scripts
	6.3.2 RTL Simulation scripts
	6.3.3 Synthesis scripts
	6.3.4 Formal verifcation scripts
	6.3.5 GTL Simulation scripts

	6.4 Xilinx Dynamic Partial Reconfiguration Examples

	7 GRLIB FPGA board template designs
	7.1 Introduction
	7.2 Supported FPGA boards

	8 Using netlists
	8.1 Introduction
	8.2 Mapped VHDL
	8.3 Xilinx netlist files
	8.4 Altera netlists
	8.5 Known limitations

	9 Extending GRLIB
	9.1 Introduction
	9.2 GRLIB organisation
	9.2.1 Encrypted RTL

	9.3 Adding an AMBA IP core to GRLIB
	9.3.1 Example of adding an existing AMBA AHB slave IP core
	9.3.2 AHB Plug&play configuration
	9.3.3 Example of creating an APB slave IP core
	9.3.4 APB plug&play configuration

	9.4 Adding a design to GRLIB
	9.4.1 Overview
	9.4.2 Example: Adding a template design for Nexys4

	9.5 Using verilog code
	9.6 Adding portabilty support for new target technologies
	9.6.1 General
	9.6.2 Adding a new technology
	9.6.3 Encapsulation
	9.6.4 Memories
	9.6.5 Pads
	9.6.6 Clock generators

	9.7 Extending the xconfig GUI configuration
	9.7.1 Introduction
	9.7.2 IP core xconfig files
	9.7.3 xconfig menu entries
	9.7.4 Adding new xconfig entries
	9.7.5 Other uses and limitations

